ترغب بنشر مسار تعليمي؟ اضغط هنا

272 - I. Pallecchi , F. Telesio , D. Li 2015
Understanding the nature of charge carriers at the LaAlO3/SrTiO3 interface is one of the major open issues in the full comprehension of the charge confinement phenomenon in oxide heterostructures. Here, we investigate thermopower to study the electro nic structure in LaAlO3/SrTiO3 at low temperature as a function of gate field. In particular, under large negative gate voltage, corresponding to the strongly depleted charge density regime, thermopower displays record-high negative values of the order of 10^4 - 10^5 microV/K, oscillating at regular intervals as a function of the gate voltage. The huge thermopower magnitude can be attributed to the phonon-drag contribution, while the oscillations map the progressive depletion and the Fermi level descent across a dense array of localized states lying at the bottom of the Ti 3d conduction band. This study is the first direct evidence of a localized Anderson tail in the two-dimensional (2D) electron liquid at the LaAlO3/SrTiO3 interface.
Investigations of MgB2 and Fe-based superconductors in recent years have revealed many unusual effects of multiband superconductivity but manifestations of anisotropic multiband effects in the critical current density Jc have not been addressed exper imentally, mostly because of the difficulties to measure Jc along the c-axis. To investigate the effect of very different intrinsic anisotropies of sigma and pi electron bands in MgB2 on current transport, we grew epitaxial films with tilted c-axis (THETA ~ 19.5{deg}), which enabled us to measure the components of Jc both along the ab-plane and the c-axis using magneto-optical and transport techniques. These measurements were combined with scanning and transmission electron microscopy, which revealed terraced steps on the surface of the c-axis tilted films. The measured field and temperature dependencies of the anisotropic Jc(H) show that Jc,L parallel to the terraced steps is higher than Jc,T perpendicular to the terraced steps, and Jc of thinner films (50 nm) obtained from transport experiments at 0.1 T reaches ~10% of the depairing current density Jd in the ab plane, while magneto-optical imaging revealed much higher Jc at lower fields. To analyze the experimental data we developed a model of anisotropic vortex pinning which accounts for the observed behavior of Jc in the c-axis tilted films and suggests that the apparent anisotropy of Jc is affected by current pairbreaking effects in the weaker {pi} band. Our results indicate that the out-of-plane current transport mediated by the {pi} band could set the ultimate limit of Jc in MgB2 polycrystals.
We study normal state electrical, thermoelectrical and thermal transport in polycrystalline BiS2-based compounds, which become superconducting by F doping on the O site. In particular we explore undoped LaOBiS2 and doped LaO0.5F0.5BiS2 samples, prepa red either with or without high pressure annealing, in order to evidence the roles of doping and preparation conditions. The high pressure annealed sample exhibits room temperature values of resistivity ro around 5 mohmcm, Seebeck coefficient S around -20 microV/K and thermal conductivity k around 1.5 W/Km, while the Hall resistance RH is negative at all temperatures and its value is -10-8 m3/C at low temperature. The sample prepared at ambient pressure exhibits RH positive in sign and five times larger in magnitude, and S negative in sign and slightly smaller in magnitude. These results reveal a complex multiband evolution brought about by high pressure annealing. In particular, the sign inversion and magnitude suppression of RH, indicating increased electron-type carrier density in the high pressure sample, may be closely related to previous findings about change in lattice parameters and enhancement of superconducting Tc by high pressure annealing. As for the undoped sample, it exhibits the 10 times larger resistivity, 10 times larger |S| and 10 times larger |RH| than its doped counterpart, consistently with its insulating nature. Our results point out the dramatic effect of preparation conditions in affecting charge carrier density as well as structural, band and electronic parameters in these systems.
In this work we investigate the Ru substituted LaFeAsO compound, by studying the magnetotransport behaviour and its relationship with the band structure, in different regimes of temperature, magnetic field and Ru content. In particular we analyse the magnetoresistance of LaFe1-xRuxAsO (0 <= x <= 0.6) samples with the support of ab initio calculations and we find out that in the whole series: (i) the transport is dominated by electron bands only; (ii) the magnetoresistance exhibits distinctive features related to the presence of Dirac cones; indeed, ab initio calculations confirm the presence of anisotropic Dirac cones in the band structure; (iii) the low temperature mobility is exceptionally high and reaches 18.6 m2/(Vs) in the Ru-free sample at T=2K, in the extreme limit of a single Landau level occupied in the Dirac cones; (iv) the mobility drops abruptly above 10K-15K; (v) the disorder has a very weak effect on the band mobilities and on the transport properties; (vi) there exists a correlation between the temperature ranges of Dirac cones and SDW carrier condensation. These findings may be of crucial importance in the investigation of the pairing mechanism in the F-doped superconducting La(Fe,Ru)As(O,F) compounds related to this series of parent compounds.
We probe spin transport in Cu_{2}O by measuring spin valve effect in La_{0.7}Sr_{0.3}MnO_{3}/Cu_{2}O/Co and La_{0.7}Sr_{0.3}MnO_{3}/Cu_{2}O/La_{0.7}Sr_{0.3}MnO_{3} epitaxial heterostructures. In La_{0.7}Sr_{0.3}MnO_{3}/Cu_{2}O/Co systems we find that a fraction of out-of-equilibrium spin polarized carrier actually travel across the Cu_{2}O layer up to distances of almost 100 nm at low temperature. The corresponding spin diffusion length dspin is estimated around 40 nm. Furthermore, we find that the insertion of a SrTiO_{3} tunneling barrier does not improve spin injection, likely due to the matching of resistances at the interfaces. Our result on dspin may be likely improved, both in terms of Cu_{2}O crystalline quality and sub-micrometric morphology and in terms of device geometry, indicating that Cu_{2}O is a potential material for efficient spin transport in devices based on crystalline oxides.
We present measurements of resistivity and thermopower of Fe1+xTe1-ySey single crystalline samples with y=0, 0.1, 0.2, 0.3 and 0.45 in zero field and in a magnetic field B=8T. We propose a qualitative analysis of the temperature behavior of S, where the samples are described as almost compensated semimetals: different electron and hole bands with similar carrier concentrations compete and their relative contribution to the thermoelectric transport depends on the respective filling, mobility and coupling with phonons. For y>=0.2, superconductivity occurs and the optimum Se-doping level for a maximum Tc of 13 K turns out to be y=0.3. At low temperatures, evidence of a contribution to S by an excitation-drag mechanism is found, while at high temperatures a strikingly flat behavior of S is explained within a narrow band Hubbard model. The support of a theoretical background which could provide band resolved parameters such as carrier density, mobility and electron-phonon coupling of each band would allow to extract from our data valuable quantitative information on the transport and superconducting mechanisms of these iron chalcogenides.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا