ترغب بنشر مسار تعليمي؟ اضغط هنا

The origin of the unusual 90^o ferroelectric / ferroelastic domains, consistently observed in recent studies on meso and nanoscale free-standing single crystals of BaTiO3 [Schilling et al., Physical Review B, 74, 024115 (2006); Schilling et al., Nano Letters, 7, 3787 (2007)], has been considered. A model has been developed which postulates that the domains form as a response to elastic stress induced by a surface layer which does not undergo the paraelectric-ferroelectric, cubic-tetragonal phase transition. This model was found to accurately account for the changes in domain periodicity as a function of size that had been observed experimentally. The physical origin of the surface layer might readily be associated with patterning damage, seen in experiment; however, when all evidence of physical damage is removed from the BaTiO3 surfaces by thermal annealing, the domain configuration remains practically unchanged. This suggests a more intrinsic origin, such as the increased importance of surface tension at small dimensions. The effect of surface tension is also shown to be proportional to the difference in hardness between the surface and the interior of the ferroelectric. The present model for surface tension induced twinning should also be relevant for finely grained or core-shell structured ceramics.
Macroscopic concentration of massless charge carriers with linear conic spectrum - Dirac Fermions (DF) - was shown in 2004 to exist in highly oriented pyrolytic graphite (HOPG) and governs its electronic properties. These carriers can have the same n ature as DF observed in graphite monolayer(graphene) and let to view HOPG as superposition of 2D carbon layers, almost independent electronically. We overview here the recent experimental evidences of 2D DF in graphite and their similarity with carriers in graphene.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا