ترغب بنشر مسار تعليمي؟ اضغط هنا

Origin of Ferroelastic Domains in Free-Standing Single Crystal Ferroelectric Films

320   0   0.0 ( 0 )
 نشر من قبل Igor Luk'yanchuk A
 تاريخ النشر 2009
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The origin of the unusual 90^o ferroelectric / ferroelastic domains, consistently observed in recent studies on meso and nanoscale free-standing single crystals of BaTiO3 [Schilling et al., Physical Review B, 74, 024115 (2006); Schilling et al., Nano Letters, 7, 3787 (2007)], has been considered. A model has been developed which postulates that the domains form as a response to elastic stress induced by a surface layer which does not undergo the paraelectric-ferroelectric, cubic-tetragonal phase transition. This model was found to accurately account for the changes in domain periodicity as a function of size that had been observed experimentally. The physical origin of the surface layer might readily be associated with patterning damage, seen in experiment; however, when all evidence of physical damage is removed from the BaTiO3 surfaces by thermal annealing, the domain configuration remains practically unchanged. This suggests a more intrinsic origin, such as the increased importance of surface tension at small dimensions. The effect of surface tension is also shown to be proportional to the difference in hardness between the surface and the interior of the ferroelectric. The present model for surface tension induced twinning should also be relevant for finely grained or core-shell structured ceramics.



قيم البحث

اقرأ أيضاً

Compared to AgNbO3 based ceramics, the experimental investigations on the single crystalline AgNbO3, especially the ground state and ferroic domain structures, are not on the same level. Here in this work, based on successfully synthesized AgNbO3 sin gle crystal using flux method, we observed the coexistence of ferroelastic and ferrielectric domain structures by a combination study of polarized light microscopy and piezoresponse force microscope, this finding may provide a new aspect for studying AgNbO3. The result also suggests a weak electromechanical response from the ferrielectric phase of AgNbO3 which is also supported by the transmission electron microscope characterization. Our results reveal that the AgNbO3 single crystal is in a polar ferrielectric phase at room temperature, clarifying its ground state which is controversial from the AgNbO3 ceramic materials.
Ferroelectrics display spontaneous and switchable electrical polarization. Until recently, ferroelectricity was believed to disappear at the nanoscale; now, nano-ferroelectrics are being considered in numerous applications. This renewed interest was partly fuelled by the observation of ferroelectric domains in films of a few unit cells thickness, promising further size reduction of ferroelectric devices. It turns out that at reduced scales and dimensionalities the materials properties depend crucially on the intricacies of domain formation, that is, the way the crystal splits into regions with polarization oriented along the different energetically equivalent directions, typically at 180o and 90o from each other. Here we present a step forward in the manipulation and control of ferroelectric domains by the growth of thin films with regular self-patterned arrays of 90o domains only 7 nm wide. This is the narrowest width for 90o domains in epitaxial ferroelectrics that preserves the film lateral coherence, independently of the substrate.
75 - Shang Yuan Ren 2002
Exact and general results on the electronic states in ideal free standing films are presented. In many interesting cases, such as in FCC (001) films and in FCC (110) films, the energies of most electronic states in the film can be analytically obaine d from the corresponding energy band structure of the bulk. This approach can be further extended to obtain exact and general results on the electronic states in quantum wires and quantum dots.
134 - Daesu Lee , A. Yoon , S. Y. Jang 2011
We report on nanoscale strain gradients in ferroelectric HoMnO3 epitaxial thin films, resulting in a giant flexoelectric effect. Using grazing-incidence in-plane X-ray diffraction, we measured strain gradients in the films, which were 6 or 7 orders o f magnitude larger than typical values reported for bulk oxides. The combination of transmission electron microscopy, electrical measurements, and electrostatic calculations showed that flexoelectricity provides a means of tuning the physical properties of ferroelectric epitaxial thin films, such as domain configurations and hysteresis curves.
Ferroelectric films usually have phase states and physical properties very different from those of bulk ferroelectrics. Here we propose free-standing ferroelectric-elastic multilayers as a bridge between these two material systems. Using a nonlinear thermodynamic theory, we determine phase states of such multilayers as a function of temperature, misfit strain, and volume fraction fi of ferroelectric material. The numerical calculations performed for two classical ferroelectrics - PbTiO3 and BaTiO3 - demonstrate that polarization states of multilayers in the limiting cases fi -> 0 and fi -> 1 coincide with those of thin films and bulk crystals. At intermediate volume fractions, however, the misfit strain-temperature phase diagrams of multilayers differ greatly from those of epitaxial films. Remarkably, a ferroelectric phase not existing in thin films and bulk crystals can be stabilized in BaTiO3 multilayers. Owing to additional tunable parameter and reduced clamping, ferroelectric multilayers may be superior for a wide range of device applications.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا