ترغب بنشر مسار تعليمي؟ اضغط هنا

For the first time, the total yield and inclusive spectra of the $Delta^{++}(1232)$isobar are measured in $ u p$ and $ u n$ charged-current interactions. An indication is obtained that the $Delta^{++}(1232)$ production mainly results from the neutrin o scattering on the valence d- quark of the target nucleon. The total yield of $Delta^{++}(1232)$ in $ u p$ interactions is compatible with that measured in hadronic interactions of the same net charge and net baryonic number. The yield of $Delta^{++}(1232)$ in $ u n$ interactions is significantly suppressed as compared to the case of the proton target. The form of the squared transverse momentum distributions, both in $ u p$ and $ u n$ interactions, is found to be compatible with the available data on the neutrinoproduction of $Lambda$ hyperon. The experimental data are compared with the LEPTO6.5 model predictions.
For the first time, the nuclear attenuation of three hadron systems is studied in neutrino-induced reactions using the data obtained with SKAT bubble chamber. The strongest attenuation (R_3 ~ 0.6) is observed for a system carrying an overwhelming fra ction of the current quark energy, as well as for a system with the smallest effective mass. An indication is obtained that the correlation effects in the nuclear attenuation play only a minor role. The experimental data are compared with predictions of the quark string fragmentation model.
The total yields of the all well-established light mesonic resonances (up to the $phi$(1020) meson) are estimated in neutrinonuclear interactions at < E_nu > = 10 GeV, using the data obtained with SKAT bubble chamber. For some resonances, the yields in the forward and backward hemispheres in the hadronic c.m.s. are also extracted. From the comparison of the obtained and available higher-energy data, an indication is obtained that the resonance yields rise almost linearly as a function of the mean mass < W > of the neutrinoproduced hadronic system. The fractions of pions originating from the light resonance decays are inferred.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا