ترغب بنشر مسار تعليمي؟ اضغط هنا

We explore the signatures of Majorana fermions in a nanowire based topological superconductor-quantum dot-topological superconductor hybrid device by charge transport measurements. The device is made from an epitaxially grown InSb nanowire with two s uperconductor Nb contacts on a Si/SiO$_2$ substrate. At low temperatures, a quantum dot is formed in the segment of the InSb nanowire between the two Nb contacts and the two Nb contacted segments of the InSb nanowire show superconductivity due to the proximity effect. At zero magnetic field, well defined Coulomb diamonds and the Kondo effect are observed in the charge stability diagram measurements in the Coulomb blockade regime of the quantum dot. Under the application of a finite, sufficiently strong magnetic field, a zero-bias conductance peak structure is observed in the same Coulomb blockade regime. It is found that the zero-bias conductance peak is present in many consecutive Coulomb diamonds, irrespective of the even-odd parity of the quasi-particle occupation number in the quantum dot. In addition, we find that the zero-bias conductance peak is in most cases accompanied by two differential conductance peaks, forming a triple-peak structure, and the separation between the two side peaks in bias voltage shows oscillations closely correlated to the background Coulomb conductance oscillations of the device. The observed zero-bias conductance peak and the associated triple-peak structure are in line with the signatures of Majorana fermion physics in a nanowire based topological superconductor-quantum dot-topological superconductor system, in which the two Majorana bound states adjacent to the quantum dot are hybridized into a pair of quasi-particle states with finite energies and the other two Majorana bound states remain as the zero-energy modes located at the two ends of the entire InSb nanowire.
We report on the observation of excitation of Majorana fermions in a Nb-InSb nanowire quantum dot-Nb hybrid system. The InSb nanowire quantum dot is formed between the two Nb contacts by weak Schottky barriers and is thus in the regime of strong coup lings to the contacts. Due to the proximity effect, the InSb nanowire segments covered by superconductor Nb contacts turn to superconductors with a superconducting energy gap $Delta^*$. Under an applied magnetic field larger than a critical value for which the Zeeman energy in the InSb nanowire is $E_zsim Delta^*$, the entire InSb nanowire is found to be in a nontrivial topological superconductor phase, supporting a pair of Majorana fermions, and Cooper pairs can transport between the superconductor Nb contacts via the Majorana fermion states. This transport process will be suppressed when the applied magnetic field becomes larger than a second critical value at which the transition to a trivial topological superconductor phase occurs in the system. This physical scenario has been observed in our experiment. We have found that the measured zero-bias conductance for our hybrid device shows a conductance plateau in a range of the applied magnetic field in quasi-particle Coulomb blockade regions.
Epitaxially grown, high quality semiconductor InSb nanowires are emerging material systems for the development of high performance nanoelectronics and quantum information processing and communication devices, and for the studies of new physical pheno mena in solid state systems. Here, we report on measurements of a superconductor-normal conductor-superconductor junction device fabricated from an InSb nanowire with aluminum based superconducting contacts. The measurements show a proximity induced supercurrent flowing through the InSb nanowire segment, with a critical current tunable by a gate, in the current bias configuration and multiple Andreev reflection characteristics in the voltage bias configuration. The temperature dependence and the magnetic field dependence of the critical current and the multiple Andreev reflection characteristics of the junction are also studied. Furthermore, we extract the excess current from the measurements and study its temperature and magnetic field dependences. The successful observation of the superconductivity in the InSb nanowire based Josephson junction device indicates that InSb nanowires provide an excellent material system for creating and observing novel physical phenomena such as Majorana fermions in solid state systems.
The large, level-dependent g-factors in an InSb nanowire quantum dot allow for the occurrence of a variety of level crossings in the dot. While we observe the standard conductance enhancement in the Coulomb blockade region for aligned levels with dif ferent spins due to the Kondo effect, a vanishing of the conductance is found at the alignment of levels with equal spins. This conductance suppression appears as a canyon cutting through the web of direct tunneling lines and an enclosed Coulomb blockade region. In the center of the Coulomb blockade region, we observe the predicted correlation-induced resonance, which now turns out to be part of a larger scenario. Our findings are supported by numerical and analytical calculations.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا