ترغب بنشر مسار تعليمي؟ اضغط هنا

Majorana fermion (MF) excitations in solid state system have non-Abelian statistics which is essential for topological quantum computation. Previous proposals to realize MF, however, generally requires fine-tuning of parameters. Here we explore a pla tform which avoids the fine-tuning problem, namely a ferromagnetic chain deposited on the surface of a spin-orbit coupled $s$-wave superconductor. We show that it generically supports zero-energy topological MF excitations near the two ends of the chain with minimal fine-tuning. Depending on the strength of the ferromagnetic moment in the chain, the number of MFs at each end, $n$, can be either one or two, and should be revealed by a robust zero-bias peak (ZBP) of height $2ne^2/h$ in scanning tunneling microscopy (STM) measurements which would show strong (weak) signals at the ends (middle) of the chain. The role of an approximate chiral symmetry which gives an integer topological invariant to the system is discussed.
Disorder is known to suppress the gap of a topological superconducting state that would support non-Abelian Majorana zero modes. In this paper, we study using the self-consistent Born approximation the robustness of the Majorana modes to disorder wit hin a suitably extended Eilenberger theory, in which the spatial dependence of the localized Majorana wave functions is included. We find that the Majorana mode becomes delocalized with increasing disorder strength as the topological superconducting gap is suppressed. However, surprisingly, the zero bias peak seems to survive even for disorder strength exceeding the critical value necessary for closing the superconducting gap within the Born approximation.
Contrary to the widespread belief that Majorana zero-energy modes, existing as bound edge states in 2D topological insulator (TI)-superconductor (SC) hybrid structures, are unaffected by non-magnetic static disorder by virtue of Andersons theorem, we show that such a protection against disorder does not exist in realistic multi-channel TI/SC/ferromagnetic insulator (FI) sandwich structures of experimental relevance since the time-reversal symmetry is explicitly broken locally at the SC/FI interface where the end Majorana mode (MM) resides. We find that although the MM itself and the emph{bulk} topological superconducting phase inside the TI are indeed universally protected against disorder, disorder-induced subgap states are generically introduced at the TI edge due to the presence of the FI/SC interface as long as multiple edge channels are occupied. We discuss the implications of the finding for the detection and manipulation of the edge MM in realistic TI/SC/FI experimental systems of current interest.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا