ترغب بنشر مسار تعليمي؟ اضغط هنا

We show that topological transitions in electronic spin transport are feasible by a controlled manipulation of spin-guiding fields. The transitions are determined by the topology of the fields texture through an effective Berry phase (related to the winding parity of spin modes around poles in the Bloch sphere), irrespective of the actual complexity of the nonadiabatic spin dynamics. This manifests as a distinct dislocation of the interference pattern in the quantum conductance of mesoscopic loops. The phenomenon is robust against disorder, and can be experimentally exploited to determine the magnitude of inner spin-orbit fields.
The rotation of a quantum liquid induces vortices to carry angular momentum. When the system is composed of multiple components that are distinguishable from each other, vortex cores in one component may be filled by particles of the other component, and coreless vortices form. Based on evidence from computational methods, here we show that the formation of coreless vortices occurs very similarly for repulsively interacting bosons and fermions, largely independent of the form of the particle interactions. We further address the connection to the Halperin wave functions of non-polarized quantum Hall states.
129 - H. Saarikoski , E. Tolo , A. Harju 2008
When a gas of electrons is confined to two dimensions, application of a strong magnetic field may lead to startling phenomena such as emergence of electron pairing. According to a theory this manifests itself as appearance of the fractional quantum H all effect with a quantized conductivity at an unusual half-integer nu=5/2 Landau level filling. Here we show that similar electron pairing may occur in quantum dots where the gas of electrons is trapped by external electric potentials into small quantum Hall droplets. However, we also find theoretical and experimental evidence that, depending on the shape of the external potential, the paired electron state can break down, which leads to a fragmentation of charge and spin densities into incompressible domains. The fragmentation of the quantum Hall states could be an issue in the proposed experiments that aim to probe for non-abelian quasi-particle characteristics of the nu=5/2 quantum Hall state.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا