ترغب بنشر مسار تعليمي؟ اضغط هنا

We present an optical mode solver for a whispering gallery resonator coupled to an adjacent arbitrary shaped nano-particle that breaks the axial symmetry of the resonator. Such a hybrid resonator-nanoparticle is similar to what was recently used for bio-detection and for field enhancement. We demonstrate our solver by parametrically studying a toroid-nanoplasmonic device and get the optimal nano-plasmonic size for maximal enhancement. We investigate cases near a plasmonic resonance as well as far from a plasmonic resonance. Unlike common plasmons that typically benefit from working near their resonance, here working far from plasmonic resonance provides comparable performance. This is because the plasmonic resonance enhancement is accompanied by cavity quality degradation through plasmonic absorption.
In the Terahertz (THz) domain, we investigate both numerically and experimentally the directional emission of whispering gallery mode resonators that are perturbed by a small scatterer in the vicinity of the resonators rim. We determine quality facto r degradation, the modal structure and the emission direction for various geometries. We find that scatterers do allow for directional emission without destroying the resonators quality factor. This finding allows for new geometries and outcoupling scenarios for active whispering gallery mode structures such as quantum cascade lasers and passive resonators such as evanescent sensors. The experimental results agree well with finite difference time domain simulations.
We utilize a high quality calcium fluoride whispering-gallery-mode resonator to stabilize a simple erbium doped fiber ring laser with an emission frequency of 196 THz (wavelenght 1530 nm) to a linewidth below 650 Hz. This corresponds to a relative st ability of 3.3 x 10^(-12) over 16 mus. In order to characterize the linewidth we use two identical self-built lasers and a commercial laser to determine the individual lasing linewidth via the three-cornered hat method.
A fiber laser is stabilized using a Calcium Fluoride (CaF2) whispering-gallery-mode resonator. It is set up using a semiconductor optical amplifier as a gain medium. The resonator is critically coupled through prisms, and used as a filtering element to suppress the laser linewidth. Using the self-heterodyne beat technique the linewidth is determined to be 13 kHz. This implies an enhancement factor of 10^3 with respect to the passive cavity linewidth. The three-cornered hat method shows a stability of 10^(-11) after 10 mu s.
We demonstrate a narrow line, fiber loop laser using Erbium-doped fiber as the gain material, stabilized by using a microsphere as a transmissive frequency selective element. Stable lasing with a linewidth of 170 kHz is observed, limited by the exper imental spectral resolution. A linear increase in output power and a red-shift of the lasing mode were also observed with increasing pump power. Its potential application is also discussed.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا