ﻻ يوجد ملخص باللغة العربية
A fiber laser is stabilized using a Calcium Fluoride (CaF2) whispering-gallery-mode resonator. It is set up using a semiconductor optical amplifier as a gain medium. The resonator is critically coupled through prisms, and used as a filtering element to suppress the laser linewidth. Using the self-heterodyne beat technique the linewidth is determined to be 13 kHz. This implies an enhancement factor of 10^3 with respect to the passive cavity linewidth. The three-cornered hat method shows a stability of 10^(-11) after 10 mu s.
We demonstrate a narrow line, fiber loop laser using Erbium-doped fiber as the gain material, stabilized by using a microsphere as a transmissive frequency selective element. Stable lasing with a linewidth of 170 kHz is observed, limited by the exper
We utilize a high quality calcium fluoride whispering-gallery-mode resonator to stabilize a simple erbium doped fiber ring laser with an emission frequency of 196 THz (wavelenght 1530 nm) to a linewidth below 650 Hz. This corresponds to a relative st
Whispering gallery mode (WGM) resonators are compelling optical devices, however they are nearly unexplored in the terahertz (THz) domain. In this letter, we report on THz WGMs in quartz glass bubble resonators with sub-wavelength wall thickness. An
We have stabilized an external cavity diode laser to a whispering gallery mode resonator formed by a protrusion of a single-crystal magnesiumdifluoride cylinder. The cylinders compact dimensions (<1 cm^3) reduce the sensitivity to vibrations and simp
We demonstrate for the first time natural phase matching for optical frequency doubling in a high-Q whispering gallery mode resonator made of Lithium Niobate. A conversion efficiency of 9% is achieved at 30 micro Watt in-coupled continuous wave pump