ترغب بنشر مسار تعليمي؟ اضغط هنا

We present a detailed investigation of the magnetic and superconducting properties of Ca1-xNaxFe2As2 single crystals with x = 0.00, 0.35, 0.50, and 0.67 by means of the local probe techniques Moessbauer spectroscopy and muon spin relaxation experimen ts. With increasing Na substitution level, the magnetic order parameter as well as the magneto-structural phase transition are suppressed. For x = 0.50 we find a microscopic coexistence of magnetic and superconducting phases accompanied by a reduction of the magnetic order parameter below the superconducting transition temperature Tc. A systematic comparison with other 122 pnictides reveals a square-root correlation between the reduction of the magnetic order parameter and the ratio of the transition temperatures, Tc/TN, which can be understood in the framework of a Landau theory. In the optimally doped sample with Tc = 34 K, diluted magnetism is found and the temperature dependence of the penetration depth and superfluid density are obtained, proving the presence of two superconducting s-wave gaps
We present a detailed local probe study of the magnetic order in the oxychalcogenide La2O2Fe2OSe2 utilizing 57Fe Moessbauer, 139La NMR, and muon spin relaxation spectroscopy. This system can be regarded as an insulating reference system of the Fe ars enide and chalcogenide superconductors. From the combination of the local probe techniques we identify a non-collinear magnetic structure similar to Sr2F2Fe2OS2. The analysis of the magnetic order parameter yields an ordering temperature TN = 90.1 K and a critical exponent of beta = 0.133, which is close to the 2D Ising universality class as reported in the related oxychalcogenide family.
We present a detailed investigation of the electronic phase diagram of effectively charge compensated Ba1-xKx(Fe1-yCoy)2As2 with x/2 = y. Our experimental study by means of x-ray diffraction, Mossbauer spectroscopy, muon spin relaxation and ac suscep tibility measurements on polycrystalline samples is complemented by density functional electronic structure calculations. For low substitution levels of x/2 = y < 0.13, the system displays an orthorhombically distorted and antiferromagnetically ordered ground state. The low temperature structural and magnetic order parameters are successively reduced with increasing substitution level. We observe a linear relationship between the structural and the magnetic order parameter as a function of temperature and substitution level for x/2 = y < 0.13. At intermediate substitution levels in the range between 0.13 and 0.19, we find superconductivity with a maximum Tc of 15 K coexisting with static magnetic order on a microscopic length scale. For higher substitution levels x/2 = y > 0.25 a tetragonal non-magnetic ground state is observed. Our DFT calculations yield a signifcant reduction of the Fe 3d density of states at the Fermi energy and a strong suppression of the ordered magnetic moment in excellent agreement with experimental results. The appearance of superconductivity within the antiferromagnetic state can by explained by the introduction of disorder due to non-magnetic impurities to a system with a constant charge carrier density. Our experimental study by means of x-ray diffraction, Mossbauer spectroscopy, muon spin relaxation and ac susceptibility measurements on polycrystalline samples is complemented by density functional electronic structure calculations.
We report detailed $^{75}$As-NQR investigations of the locally non-centrosymmetric superconductor SrPtAs. The spin-lattice relaxation studies prove weakly coupled multi-gap superconductivity. The Hebel-Slichter peak, a hallmark of conventional superc onductivity, is strongly suppressed, which points to an unconventional superconducting state. The observed behavior excludes a superconducting order parameter with line nodes and is consistent with proposed $f$-wave and chiral $d$-wave order parameters.
The high field superconducting state in CeCoIn5 has been studied by transverse field muon spin rotation measurements with an applied field parallel to the crystallographic c-axis close to the upper critical field Hc2 = 4.97 T. At magnetic fields >= 4 .8 T the muon Knight shift is enhanced and the superconducting transition changes from second order towards first order as predicted for Pauli-limited superconductors. The field and temperature dependence of the transverse muon spin relaxation rate sigma reveal paramagnetic spin fluctuations in the field regime from 2 T < H < 4.8 T. In the normal state close to Hc2 correlated spin fluctuations as described by the self consistent renormalization theory are observed. The results support the formation of a mode-coupled superconducting and antiferromagnetically ordered phase in CeCoIn5 for H directed parallel to the c-axis.
We report zero field muon spin relaxation (muSR) measurements on RFeAsO with R = La, Ce, Pr, and Sm. We study the interaction of the FeAs and R (rare earth) electronic systems in the non superconducting magnetically ordered parent compounds of RFeAsO {1-x}Fx superconductors via a detailed comparison of the local hyperfine fields at the muon site with available Moessbauer spectroscopy and neutron scattering data. These studies provide microscopic evidence of long range commensurate magnetic Fe order with the Fe moments not varying by more than 15 % within the series RFeAsO with R = La, Ce, Pr, and Sm. At low temperatures, long range R magnetic order is also observed. Different combined Fe and R magnetic structures are proposed for all compounds using the muon site in the crystal structure obtained by electronic potential calculations. Our data point to a strong effect of R order on the iron subsystem in the case of different symmetry of Fe and R order parameters resulting in a Fe spin reorientation in the R ordered phase in PrFeAsO. Our symmetry analysis proves the absence of collinear Fe--R Heisenberg interactions in RFeAsO. A strong Fe--Ce coupling due to non--Heisenberg anisotropic exchange is found in CeFeAsO which results in a large staggered Ce magnetization induced by the magnetically ordered Fe sublattice far above T_N{Ce}. Finally, we argue that the magnetic R--Fe interaction is probably not crucial for the observed enhanced superconductivity in RFeAsO{1-x}Fx with a magnetic R ion.
The competition of magnetic order and superconductivity is a key element in the physics of all unconventional superconductors, e.g. in high-transition-temperature cuprates 1, heavy fermions 2 and organic superconductors3. Here superconductivity is of ten found close to a quantum critical point where long-range antiferromagnetic order is gradually suppressed as a function of a control parameter, e.g. charge carrier doping or pressure. It is believed that dynamic spin fluctuations associated with this quantum critical behaviour are crucial for the mechanism of superconductivity. Recently high-temperature superconductivity has been discovered in iron-pnictides providing a new class of unconventional superconductors4,5,6. Similar to other unconventional superconductors the parent compounds of the pnictides exhibit a magnetic ground state7,8 and superconductivity is induced upon charge carrier doping. In this Letter the structural and electronic phase diagram is investigated by means of x-ray scattering, MuSR and Moessbauer spectroscopy on the series LaO1-xFxFeAs. We find a discontinuous first-order-like change of the Neel temperature, the superconducting transition temperature and of the respective order parameters. Our results strongly question the relevance of quantum critical behaviour in ironpnictides and prove a strong coupling of the structural orthorhombic distortion and the magnetic order both disappearing at the phase boundary to the superconducting state.
We present a detailed study on the magnetic order in the undoped mother compound LaOFeAs of the recently discovered Fe-based superconductor LaO$_{1-x}$F$_x$FeAs. In particular, we present local probe measurements of the magnetic properties of LaOFeAs by means of $^{57}$Fe Mossbauer spectroscopy and muon spin relaxation in zero external field along with magnetization and resistivity studies. These experiments prove a commensurate static magnetic order with a strongly reduced ordered moment of 0.25(5) $mu_B$ at the iron site below T_N = 138 K, well separated from a structural phase transition at T_N = 156 K. The temperature dependence of the sublattice magnetization is determined and compared to theory. Using a four-band spin density wave model both, the size of the order parameter and the quick saturation below T_N are reproduced.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا