ترغب بنشر مسار تعليمي؟ اضغط هنا

We investigate the relationship between the mass of the central supermassive black hole, M_bh, and the host galaxy luminosity, L_gal, in a sample of quasars from the Sloan Digital Sky Survey (SDSS) Data Release 7 (DR7). We use composite quasar spectr a binned by black hole mass and redshift to assess galaxy features that would otherwise be overwhelmed by noise in individual spectra. The black hole mass is calculated using the photoionization method, and the host galaxy luminosity is inferred from the depth of the Ca II H + K features in the composite spectra. We evaluate the evolution in the M_bh - L_gal relationship by examining the redshift dependence of Delta log M_bh, the offset in black hole mass from the local black hole - bulge relationship. There is little systematic trend in Delta log M_bh out to z = 0.8. Using the width of the [O III] emission line as a proxy for the stellar velocity dispersion, sigma_*, we find agreement of our derived host luminosities with the locally-observed Faber-Jackson relation. This supports the utility of the width of the [O III] line as a proxy for sigma_* in statistical studies.
Recent results indicate that the compact lenticular galaxy NGC 1277 in the Perseus Cluster contains a black hole of approximately 10 billion solar masses. This far exceeds the expected mass of the central black hole in a galaxy of the modest dimensio ns of NGC 1277. We suggest that this giant black hole was ejected from the nearby giant galaxy NGC 1275 and subsequently captured by NGC 1277. The ejection was the result of gravitational radiation recoil when two large black holes merged following the merger of two giant ellipticals that helped to form NGC 1275. The black hole wandered in the cluster core until it was captured in a close encounter with NGC 1277. The migration of black holes in clusters may be a common occurrence.
We present HST and UKIRT spectra and images of the 2 kpc binary quasar LBQS 0103-2753 (z=0.858). The HST images (V- and I-band) show tidal features demonstrating that this system is a major galaxy merger in progress. A two-color composite image bring s out knots of star formation along the tidal arc and elsewhere. The infrared spectrum shows that both objects are at the same redshift, and that the discrepant redshift of C IV in component A is a consequence of the BAL absorption in the spectrum of this component. LBQS 0103-2753 is one of the most closely spaced binary QSOs known, and is one of relatively few dual AGN showing confirmed broad emission lines from both components. While statistical studies of binary QSOs suggest that simultaneous fueling of both black holes during a merger may be relatively rare, LBQS 0103-2753 demonstrates that such fueling can occur at high luminosity at a late stage in the merger at nuclear spacing of only a few kpc, without severe obscuration of the nuclei.
We present AGN from the Sloan Digital Sky Survey (SDSS) having double-peaked profiles of [OIII] 5007,4959 and other narrow emission-lines, motivated by the prospect of finding candidate binary AGN. These objects were identified by means of a visual e xamination of 21,592 quasars at z < 0.7 in SDSS Data Release 7 (DR7). Of the spectra with adequate signal-to-noise, 148 spectra exhibit a double-peaked [OIII] profile. Of these, 86 are Type 1 AGN and 62 are Type 2 AGN. Only two give the appearance of possibly being optically resolved double AGN in the SDSS images, but many show close companions or signs of recent interaction. Radio-detected quasars are three times more likely to exhibit a double-peaked [OIII] profile than quasars with no detected radio flux, suggesting a role for jet interactions in producing the double-peaked profiles. Of the 66 broad line (Type 1) AGN that are undetected in the FIRST survey, 0.9% show double peaked [OIII] profiles. We discuss statistical tests of the nature of the double-peaked objects. Further study is needed to determine which of them are binary AGN rather than disturbed narrow line regions, and how many additional binaries may remain undetected because of insufficient line-of-sight velocity splitting. Previous studies indicate that 0.1% of SDSS quasars are spatially resolved binaries, with typical spacings of ~10 to 100 kpc. If a substantial fraction of the double-peaked objects are indeed binaries, then our results imply that binaries occur more frequently at smaller separations (< 10 kpc). This suggests that simultaneous fueling of both black holes is more common as the binary orbit decays through these spacings.
The quasar SDSS J105041.35+345631.3 (z = 0.272) has broad emission lines blueshifted by 3500 km/s relative to the narrow lines and the host galaxy. Such an object may be a candidate for a recoiling supermassive black hole, binary black hole, a superp osition of two objects, or an unusual geometry for the broad emission-line region. The absence of narrow lines at the broad line redshift argues against superposition. New Keck spectra of J1050+3546 place tight constraints on the binary model. The combination of large velocity shift and symmetrical H-beta profile, as well as aspects of the narrow line spectrum, make J1050+3546 an interesting candidate for black hole recoil. Other aspects of the spectrum, however, suggest that the object is most likely an extreme case of a ``double-peaked emitter. We discuss possible observational tests to determine the true nature of this exceptional object.
Mergers of spinning black holes can give recoil velocities from gravitational radiation up to several thousand km/s. A recoiling supermassive black hole in an AGN can retain the inner part of its accretion disk, providing fuel for continuing AGN acti vity. Using AGN in the Sloan Digital Sky Survey (SDSS) that show velocity shifts of the broad emission lines relative to the narrow lines, we place upper limits on the incidence of high velocity recoils in AGN. Brief but powerful flares in soft X-rays may occur when bound material falls back into the moving accretion disk.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا