ترغب بنشر مسار تعليمي؟ اضغط هنا

115 - Gregory Mace 2014
Multi-epoch photometry from AllWISE provides the opportunity to investigate variability at 3.4 and 4.6 microns for most known brown dwarfs. WISE observed the same patch of sky repeatedly and within a days time, roughly 12 observations were obtained o n a given patch of sky; then, another 12 were obtained roughly six months later when that patch of sky was again in view. For most of the sky, AllWISE contains two separate epochs of about a dozen observations each, although ~30% of the sky has three such epochs available in AllWISE. With the AllWISE multi-epoch photometry of ~1500 known M, L, T, and Y dwarfs, I computed the Stetson J Index and quantified variability as a function of spectral type. I found that the average single-exposure photometric uncertainty in AllWISE (~0.2 magnitudes) is too large to robustly identify flux variability smaller than ~20%. However, multi-epoch photometry from AllWISE remains a useful resource in cases where flux variability is known to be present with large amplitudes, or for bright nearby objects with lower photometric uncertainties.
47 - Gregory N. Mace 2013
We have discovered a wide separation (188.5) T8 subdwarf companion to the sdM1.5+WD binary Wolf 1130. Companionship of WISE J200520.38+542433.9 is verified through common proper motion over a ~3 year baseline. Wolf 1130 is located 15.83 +/- 0.96 pars ecs from the Sun, placing the brown dwarf at a projected separation of ~3000 AU. Near-infrared colors and medium resolution (R~2000-4000) spectroscopy establish the uniqueness of this system as a high-gravity, low-metallicity benchmark. Although there are a number of low-metallicity T dwarfs in the literature, WISE J200520.38+542433.9 has the most extreme inferred metallicity to date with [Fe/H] = -0.64 +/- 0.17 based on Wolf 1130. Model comparisons to this exemplar late-type subdwarf support it having an old age, a low metallicity, and a small radius. However, the spectroscopic peculiarities of WISE J200520.38+542433.9 underscore the importance of developing the low-metallicity parameter space of the most current atmospheric models.
89 - Gregory N. Mace 2013
We report the discovery of 87 new T dwarfs uncovered with the Wide-field Infrared Survey Explorer (WISE) and three brown dwarfs with extremely red near-infrared colors that exhibit characteristics of both L and T dwarfs. Two of the new T dwarfs are l ikely binaries with L7+/-1 primaries and mid-type T secondaries. In addition, our follow-up program has confirmed 10 previously identified T dwarfs and four photometrically-selected L and T dwarf candidates in the literature. This sample, along with the previous WISE discoveries, triples the number of known brown dwarfs with spectral types later than T5. Using the WISE All-Sky Source Catalog we present updated color-color and color-type diagrams for all the WISE-discovered T and Y dwarfs. Near-infrared spectra of the new discoveries are presented, along with spectral classifications. To accommodate later T dwarfs we have modified the integrated flux method of determining spectral indices to instead use the median flux. Furthermore, a newly defined J-narrow index differentiates the early-type Y dwarfs from late-type T dwarfs based on the J-band continuum slope. The K/J indices for this expanded sample show that 32% of late-type T dwarfs have suppressed K-band flux and are blue relative to the spectral standards, while only 11% are redder than the standards. Comparison of the Y/J and K/J index to models suggests diverse atmospheric conditions and supports the possible re-emergence of clouds after the L/T transition. We also discuss peculiar brown dwarfs and candidates that were found not to be substellar, including two Young Stellar Objects and two Active Galactic Nuclei. The coolest WISE-discovered brown dwarfs are the closest of their type and will remain the only sample of their kind for many years to come.
55 - G. N. Mace 2012
The young, low-mass, triple system NTTS 155808-2219 (ScoPMS 20) was previously identified as a ~17-day period single-lined spectroscopic binary with a tertiary component at 0.21 arcseconds. Using high-resolution infrared spectra, acquired with NIRSPE C on Keck II, both with and without adaptive optics, we measured radial velocities of all three components. Reanalysis of the single-lined visible light observations, made from 1987 to 1993, also yielded radial velocity detections of the three stars. Combining visible light and infrared data to compute the orbital solution produces orbital parameters consistent with the single-lined solution and a mass ratio of q = 0.78 +/- 0.01 for the SB. We discuss the consistency between our results and previously published data on this system, our radial-velocity analysis with both observed and synthetic templates, and the possibility that this system is eclipsing, providing a potential method for the determination of the stars absolute masses. Over the ~20 year baseline of our observations, we have measured the acceleration of the SBs center-of-mass in its orbit with the tertiary. Long-term, adaptive optics imaging of the tertiary will eventually yield dynamical data useful for component mass estimates.
The young system RX J0529.3+1210 was initially identified as a single-lined spectroscopic binary. Using high-resolution infrared spectra, acquired with NIRSPEC on Keck II, we measured radial velocities for the secondary. The method of using the infra red regime to convert single-lined spectra into double-lined spectra, and derive the mass ratio for the binary system, has been successfully used for a number of young, low-mass binaries. For RX J0529.3+1210, a long- period(462 days) and highly eccentric(0.88) binary system, we determine the mass ratio to be 0.78+/-0.05 using the infrared double-lined velocity data alone, and 0.73+/-0.23 combining visible light and infrared data in a full orbital solution. The large uncertainty in the latter is the result of the sparse sampling in the infrared and the high eccentricity: the stars do not have a large velocity separation during most of their ~1.3 year orbit. A mass ratio close to unity, consistent with the high end of the one sigma uncertainty for this mass ratio value, is inconsistent with the lack of a visible light detection of the secondary component. We outline several scenarios for a color difference in the two stars, such as one heavily spotted component, higher order multiplicity, or a unique evolutionary stage, favoring detection of only the primary star in visible light, even in a mass ratio ~1 system. However, the evidence points to a lower ratio. Although RX J0529.3+1210 exhibits no excess at near-infrared wavelengths, a small 24 micron excess is detected, consistent with circumbinary dust. The properties of this binary and its membership in Lambda Ori versus a new nearby stellar moving group at ~90 pc are discussed. We speculate on the origin of this unusual system and on the impact of such high eccentricity on the potential for planet formation.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا