ترغب بنشر مسار تعليمي؟ اضغط هنا

A Study of the Diverse T Dwarf Population Revealed by WISE

131   0   0.0 ( 0 )
 نشر من قبل Gregory Mace
 تاريخ النشر 2013
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Gregory N. Mace




اسأل ChatGPT حول البحث

We report the discovery of 87 new T dwarfs uncovered with the Wide-field Infrared Survey Explorer (WISE) and three brown dwarfs with extremely red near-infrared colors that exhibit characteristics of both L and T dwarfs. Two of the new T dwarfs are likely binaries with L7+/-1 primaries and mid-type T secondaries. In addition, our follow-up program has confirmed 10 previously identified T dwarfs and four photometrically-selected L and T dwarf candidates in the literature. This sample, along with the previous WISE discoveries, triples the number of known brown dwarfs with spectral types later than T5. Using the WISE All-Sky Source Catalog we present updated color-color and color-type diagrams for all the WISE-discovered T and Y dwarfs. Near-infrared spectra of the new discoveries are presented, along with spectral classifications. To accommodate later T dwarfs we have modified the integrated flux method of determining spectral indices to instead use the median flux. Furthermore, a newly defined J-narrow index differentiates the early-type Y dwarfs from late-type T dwarfs based on the J-band continuum slope. The K/J indices for this expanded sample show that 32% of late-type T dwarfs have suppressed K-band flux and are blue relative to the spectral standards, while only 11% are redder than the standards. Comparison of the Y/J and K/J index to models suggests diverse atmospheric conditions and supports the possible re-emergence of clouds after the L/T transition. We also discuss peculiar brown dwarfs and candidates that were found not to be substellar, including two Young Stellar Objects and two Active Galactic Nuclei. The coolest WISE-discovered brown dwarfs are the closest of their type and will remain the only sample of their kind for many years to come.



قيم البحث

اقرأ أيضاً

We present individual dynamical masses for the nearby M9.5+T5.5 binary WISE J072003.20$-$084651.2AB, a.k.a. Scholzs star. Combining high-precision CFHT/WIRCam photocenter astrometry and Keck adaptive optics resolved imaging, we measure the first high -quality parallactic distance ($6.80_{-0.06}^{+0.05}$ pc) and orbit ($8.06_{-0.25}^{+0.24}$ yr period) for this system composed of a low-mass star and brown dwarf. We find a moderately eccentric orbit ($e = 0.240_{-0.010}^{+0.009}$), incompatible with previous work based on less data, and dynamical masses of $99pm6$ $M_{rm Jup}$ and $66pm4$ $M_{rm Jup}$ for the two components. The primary mass is marginally inconsistent (2.1$sigma$) with the empirical mass$-$magnitude$-$metallicity relation and models of main-sequence stars. The relatively high mass of the cold ($T_{rm eff} = 1250pm40$ K) brown dwarf companion indicates an age older than a few Gyr, in accord with age estimates for the primary star, and is consistent with our recent estimate of $approx$70 $M_{rm Jup}$ for the stellar/substellar boundary among the field population. Our improved parallax and proper motion, as well as an orbit-corrected system velocity, improve the accuracy of the systems close encounter with the solar system by an order of magnitude. WISE J0720$-$0846AB passed within $68.7pm2.0$ kAU of the Sun $80.5pm0.7$ kyr ago, passing through the outer Oort cloud where comets can have stable orbits.
We report the detection of 388 pulsating variable stars (and some additional miscellaneous variables) in the Carina dSph galaxy over an area covering the full visible extent of the galaxy and extending a few times beyond its photometric (King) tidal radius along the direction of its major axis. Included in this total are 340 newly discovered dwarf Cepheids which are mostly located ~2.5 magnitudes below the horizontal branch and have very short periods (<0.1 days) typical of their class and consistent with their location on the upper part of the extended main sequence of the younger populations of the galaxy. Several extra-tidal dwarf cepheids were found in our survey up to a distance of ~1 degree from the center of Carina. Our sample also includes RR Lyrae stars and anomalous Cepheids some of which were found outside the galaxys tidal radius as well. This supports past works that suggests Carina is undergoing tidal disruption. We use the period-luminosity relationship for dwarf Cepheids to estimate a distance modulus of 20.17 +/- 0.10 mags, in very good agreement with the estimate from RR Lyrae stars. We find some important differences in the properties of the dwarf Cepheids of Carina and those in Fornax and the LMC, the only extragalactic samples of dwarf Cepheids currently known. These differences may reflect a metallicity spread, depth along the line of sight and/or, different evolutionary paths of the dwarf Cepheid stars.
Gaia will identify several 1e5 white dwarfs, most of which will be in the solar neighborhood at distances of a few hundred parsecs. Ground-based optical follow-up spectroscopy of this sample of stellar remnants is essential to unlock the enormous sci entific potential it holds for our understanding of stellar evolution, and the Galactic formation history of both stars and planets.
77 - Luis A. Zapata 2020
We present sensitive and high angular resolution ($sim$0.2-0.3$$) (sub)millimeter (230 and 345 GHz) continuum and CO(2$-$1)/CO(3$-$2) line archive observations of the disk star system in UX Tauri carried out with ALMA (The Atacama Large Millimeter/Su bmillimeter Array). These observations reveal the gas and dusty disk surrounding the young star UX Tauri A with a large signal-to-noise ratio ($>$400 in the continuum and $>$50 in the line), and for the first time is detected the molecular gas emission associated with the disk of UX Tauri C (with a size for the disk of $<$56 au). No (sub)millimeter continuum emission is detected at 5$sigma$-level (0.2 mJy at 0.85 mm) associated with UX Tauri C. For the component UX Tauri C, we estimate a dust disk mass of $leq$ 0.05 M$_oplus$. Additionally, we report a strong tidal disk interaction between both disks UX Tauri A/C, separated 360 au in projected distance. The CO line observations reveal marked spiral arms in the disk of UX Tauri A and an extended redshifted stream of gas associated with the UX Tauri C disk. No spiral arms are observed in the dust continuum emission of UX Tauri A. Assuming a Keplerian rotation we estimate the enclosed masses (disk$+$star) from their radial velocities in 1.4 $pm$ 0.6 M$_odot$ for UX Tauri A, and 70 $pm$ 30 / $sin i$ Jupiter masses for UX Tauri C (the latter coincides with the mass upper limit value for a brown dwarf). The observational evidence presented here lead us to propose that UX Tauri C is having a close approach of a possible wide, evolving and eccentric orbit around the disk of UX Tauri A causing the formation of spiral arms and the stream of molecular gas falling towards UX Tauri C.
78 - C. Ricci , R. J. Assef , D. Stern 2016
Hot, Dust-Obscured Galaxies (Hot DOGs), selected from the WISE all sky infrared survey, host some of the most powerful Active Galactic Nuclei (AGN) known, and might represent an important stage in the evolution of galaxies. Most known Hot DOGs are at $z> 1.5$, due in part to a strong bias against identifying them at lower redshift related to the selection criteria. We present a new selection method that identifies 153 Hot DOG candidates at $zsim 1$, where they are significantly brighter and easier to study. We validate this approach by measuring a redshift $z=1.009$, and an SED similar to higher redshift Hot DOGs for one of these objects, WISE J1036+0449 ($L_{rm,Bol}simeq 8times 10^{46}rm,erg,s^{-1}$), using data from Keck/LRIS and NIRSPEC, SDSS, and CSO. We find evidence of a broadened component in MgII, which, if due to the gravitational potential of the supermassive black hole, would imply a black hole mass of $M_{rm,BH}simeq 2 times 10^8 M_{odot}$, and an Eddington ratio of $lambda_{rm,Edd}simeq 2.7$. WISE J1036+0449 is the first Hot DOG detected by NuSTAR, and the observations show that the source is heavily obscured, with a column density of $N_{rm,H}simeq(2-15)times10^{23}rm,cm^{-2}$. The source has an intrinsic 2-10 keV luminosity of $sim 6times 10^{44}rm,erg,s^{-1}$, a value significantly lower than that expected from the mid-infrared/X-ray correlation. We also find that the other Hot DOGs observed by X-ray facilities show a similar deficiency of X-ray flux. We discuss the origin of the X-ray weakness and the absorption properties of Hot DOGs. Hot DOGs at $zlesssim1$ could be excellent laboratories to probe the characteristics of the accretion flow and of the X-ray emitting plasma at extreme values of the Eddington ratio.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا