ترغب بنشر مسار تعليمي؟ اضغط هنا

Recently, the first author has extended the definition of the zeta function associated with fractal strings to arbitrary bounded subsets $A$ of the $N$-dimensional Euclidean space ${mathbb R}^N$, for any integer $Nge1$. It is defined by $zeta_A(s)=in t_{A_{delta}}d(x,A)^{s-N},mathrm{d} x$ for all $sinmathbb{C}$ with $operatorname{Re},s$ sufficiently large, and we call it the distance zeta function of $A$. Here, $d(x,A)$ denotes the Euclidean distance from $x$ to $A$ and $A_{delta}$ is the $delta$-neighborhood of $A$, where $delta$ is a fixed positive real number. We prove that the abscissa of absolute convergence of $zeta_A$ is equal to $overlinedim_BA$, the upper box (or Minkowski) dimension of $A$. Particular attention is payed to the principal complex dimensions of $A$, defined as the set of poles of $zeta_A$ located on the critical line ${mathop{mathrm{Re}} s=overlinedim_BA}$, provided $zeta_A$ possesses a meromorphic extension to a neighborhood of the critical line. We also introduce a new, closely related zeta function, $tildezeta_A(s)=int_0^{delta} t^{s-N-1}|A_t|,mathrm{d} t$, called the tube zeta function of $A$. Assuming that $A$ is Minkowski measurable, we show that, under some mild conditions, the residue of $tildezeta_A$ computed at $D=dim_BA$ (the box dimension of $A$), is equal to the Minkowski content of $A$. More generally, without assuming that $A$ is Minkowski measurable, we show that the residue is squeezed between the lower and upper Minkowski contents of $A$. We also introduce transcendentally quasiperiodic sets, and construct a class of such sets, using generalized Cantor sets, along with Bakers theorem from the theory of transcendental numbers.
71 - Goran Radunovic 2015
Using geometric inversion with respect to the origin we extend the definition of box dimension to the case of unbounded subsets of Euclidean spaces. Alternative but equivalent definition is provided using stereographic projection on the Riemann spher e. We study its basic properties, and apply it to the study of the Hopf-Takens bifurcation at infinity.
In 2009, the first author introduced a class of zeta functions, called `distance zeta functions, which has enabled us to extend the existing theory of zeta functions of fractal strings and sprays (initiated by the first author and his collaborators i n the early 1990s) to arbitrary bounded (fractal) sets in Euclidean spaces of any dimensions. A closely related tool is the class of `tube zeta functions, defined using the tube function of a fractal set. These zeta functions exhibit deep connections with Minkowski contents and upper box (or Minkowski) dimensions, as well as, more generally, with the complex dimensions of fractal sets. In particular, the abscissa of (Lebesgue, i.e., absolute) convergence of the distance zeta function coincides with the upper box dimension of a set. We also introduce a class of transcendentally quasiperiodic sets, and describe their construction based on a sequence of carefully chosen generalized Cantor sets with two auxilliary parameters. As a result, we obtain a family of maximally hyperfractal compact sets and relative fractal drums (i.e., such that the associated fractal zeta functions have a singularity at every point of the critical line of convergence). Finally, we discuss the general fractal tube formulas and the Minkowski measurability criterion obtained by the authors in the context of relative fractal drums (and, in particular, of bounded subsets of the N-dimensional Euclidean space).
We establish pointwise and distributional fractal tube formulas for a large class of compact subsets of Euclidean spaces of arbitrary dimensions. These formulas are expressed as sums of residues of suitable meromorphic functions over the complex dime nsions of the compact set under consideration (i.e., over the poles of its fractal zeta function). Our results generalize to higher dimensions (and in a significant way) the corresponding ones previously obtained for fractal strings by the first author and van Frankenhuijsen. They are illustrated by several examples and applied to yield a new Minkowski measurability criterion.
90 - Michel L. Lapidus , 2014
The theory of zeta functions of fractal strings has been initiated by the first author in the early 1990s, and developed jointly with his collaborators during almost two decades of intensive research in numerous articles and several monographs. In 20 09, the same author introduced a new class of zeta functions, called `distance zeta functions, which since then, has enabled us to extend the existing theory of zeta functions of fractal strings and sprays to arbitrary bounded (fractal) sets in Euclidean spaces of any dimension. A natural and closely related tool for the study of distance zeta functions is the class of tube zeta functions, defined using the tube function of a fractal set. These three classes of zeta functions, under the name of fractal zeta functions, exhibit deep connections with Minkowski contents and upper box dimensions, as well as, more generally, with the complex dimensions of fractal sets. Further extensions include zeta functions of relative fractal drums, the box dimension of which can assume negative values, including minus infinity. We also survey some results concerning the existence of the meromorphic extensions of the spectral zeta functions of fractal drums, based in an essential way on earlier results of the first author on the spectral (or eigenvalue) asymptotics of fractal drums. It follows from these results that the associated spectral zeta function has a (nontrivial) meromorphic extension, and we use some of our results about fractal zeta functions to show the new fact according to which the upper bound obtained for the corresponding abscissa of meromorphic convergence is optimal. Finally, we conclude this survey article by proposing several open problems and directions for future research in this area.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا