ﻻ يوجد ملخص باللغة العربية
We establish pointwise and distributional fractal tube formulas for a large class of compact subsets of Euclidean spaces of arbitrary dimensions. These formulas are expressed as sums of residues of suitable meromorphic functions over the complex dimensions of the compact set under consideration (i.e., over the poles of its fractal zeta function). Our results generalize to higher dimensions (and in a significant way) the corresponding ones previously obtained for fractal strings by the first author and van Frankenhuijsen. They are illustrated by several examples and applied to yield a new Minkowski measurability criterion.
We establish a Minkowski measurability criterion for a large class of relative fractal drums (or, in short, RFDs), in Euclidean spaces of arbitrary dimension in terms of their complex dimensions, which are defined as the poles of their associated fra
We establish pointwise and distributional fractal tube formulas for a large class of relative fractal drums in Euclidean spaces of arbitrary dimensions. A relative fractal drum (or RFD, in short) is an ordered pair $(A,Omega)$ of subsets of the Eucli
In 2009, the first author introduced a new class of zeta functions, called `distance zeta functions, associated with arbitrary compact fractal subsets of Euclidean spaces of arbitrary dimension. It represents a natural, but nontrivial extension of th
The theory of zeta functions of fractal strings has been initiated by the first author in the early 1990s, and developed jointly with his collaborators during almost two decades of intensive research in numerous articles and several monographs. In 20
We shortly review different methods to obtain the scattering solutions of the Bethe-Salpeter equation in Minkowski space. We emphasize the possibility to obtain the zero energy observables in terms of the Euclidean scattering amplitude.