ترغب بنشر مسار تعليمي؟ اضغط هنا

We show two experimental realizations of Hardy ladder test of quantum nonlocality using energy-time correlated photons, following the scheme proposed by A. Cabello emph{et al.} [Phys. Rev. Lett. textbf{102}, 040401 (2009)]. Unlike, previous energy-ti me Bell experiments, these tests require precise tailored nonmaximally entangled states. One of them is equivalent to the two-setting two-outcome Bell test requiring a minimum detection efficiency. The reported experiments are still affected by the locality and detection loopholes, but are free of the post-selection loophole of previous energy-time and time-bin Bell tests.
A new criterium to detect the entanglement present in a {it hyperentangled state}, based on the evaluation of an entanglement witness, is presented. We show how some witnesses recently introduced for graph states, measured by only two local settings, can be used in this case. We also define a new witness $W_3$ that improves the resistance to noise by increasing the number of local measurements.
We describe in detail the application of four qubit cluster states, built on the simultaneous entanglement of two photons in the degrees of freedom of polarization and linear momentum, for the realization of a complete set of basic one-way quantum co mputation operations. These consist of arbitrary single qubit rotations, either probabilistic or deterministic, and simple two qubit gates, such as a c-not gate for equatorial qubits and a universal c-phase (CZ) gate acting on arbitrary target qubits. Other basic computation operations, such as the Grovers search and the Deutschs algorithms, have been realized by using these states. In all the cases we obtained a high value of the operation fidelities. These results demonstrate that cluster states of two photons entangled in many degrees of freedom are good candidates for the realization of more complex quantum computation operations based on a larger number of qubits.
We report on the implementation of a new interferometric scheme that allows the generation of photon pairs entangled in the time-energy degree of freedom. This scheme does not require any kind of temporal post-selection on the generated pairs and can be used even with lasers with short coherence time.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا