ترغب بنشر مسار تعليمي؟ اضغط هنا

407 - W.-L. Zhang , P. Richard , H. Ding 2014
We use polarization-resolved Raman spectroscopy to study the anisotropy of the electronic characteristics of the iron-pnictide parent compounds $A$Fe$_{2}$As$_{2}$ ($A$~=~Eu, Sr). We demonstrate that above the structural phase transition at Ts the dy namical anisotropic properties of the 122 compounds are governed by the emergence of $xy$-symmetry critical collective mode foretelling a condensation into a state with spontaneously broken four-fold symmetry at a temperature $T^{*}$. However, the modes critical slowing down is intervened by a structural transition at Ts, about 80~K above $T^{*}$, resulting in an anisotropic density wave state.
A second-order phase transition is associated with emergence of an order parameter and a spontaneous symmetry breaking. For the heavy fermion superconductor URu$_2$Si$_2$, the symmetry of the order parameter associated with its ordered phase below 17 .5 K has remained ambiguous despite 30 years of research, and hence is called hidden order (HO). Here we use polarization resolved Raman spectroscopy to specify the symmetry of the low energy excitations above and below the HO transition. These excitations involve transitions between interacting heavy uranium 5f orbitals, responsible for the broken symmetry in the HO phase. From the symmetry analysis of the collective mode, we determine that the HO parameter breaks local vertical and diagonal reflection symmetries at the uranium sites, resulting in crystal field states with distinct chiral properties, which order to a commensurate chirality density wave ground state.
We report observation of Leggetts collective mode in a multi-band MgB2 superconductor with T_c=39K arising from the fluctuations in the relative phase between two superconducting condensates. The novel mode is observed by Raman spectroscopy at 9.4 me V in the fully symmetric scattering channel. The observed mode frequency is consistent with theoretical considerations based on the first principle computations.
Electronic Raman scattering studies on MgB2 single crystals as a function of excitation and polarization have revealed three distinct superconducting features: a clean gap below 37 cm-1 and two coherence peaks at 109 cm-1 and 78 cm-1 which we identif y as the superconducting gaps in pi- and sigma-bands and as the Leggetts collective mode arising from the fluctuation in the relative phase between two superconducting condensates residing on corresponding bands. The temperature and field dependencies of the superconducting features have been established. A phononic Raman scattering study of the E2g boron stretching mode anharmonicity and of superconductivity induced self-energy effects is presented. We show that anharmonic two phonon decay is mainly responsible for the unusually large linewidth of the E2g mode. We observe ~2.5% hardening of the E2g phonon frequency upon cooling into the superconducting state and estimate the electron-phonon coupling strength associated with this renormalization.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا