ترغب بنشر مسار تعليمي؟ اضغط هنا

Multi-Gap Superconductivity in MgB2: Magneto-Raman Spectroscopy

166   0   0.0 ( 0 )
 نشر من قبل Girsh Blumberg
 تاريخ النشر 2007
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Electronic Raman scattering studies on MgB2 single crystals as a function of excitation and polarization have revealed three distinct superconducting features: a clean gap below 37 cm-1 and two coherence peaks at 109 cm-1 and 78 cm-1 which we identify as the superconducting gaps in pi- and sigma-bands and as the Leggetts collective mode arising from the fluctuation in the relative phase between two superconducting condensates residing on corresponding bands. The temperature and field dependencies of the superconducting features have been established. A phononic Raman scattering study of the E2g boron stretching mode anharmonicity and of superconductivity induced self-energy effects is presented. We show that anharmonic two phonon decay is mainly responsible for the unusually large linewidth of the E2g mode. We observe ~2.5% hardening of the E2g phonon frequency upon cooling into the superconducting state and estimate the electron-phonon coupling strength associated with this renormalization.



قيم البحث

اقرأ أيضاً

We report scanning tunneling spectroscopy (STS) measurements of the gap properties of both ceramic MgB2 and c-axis oriented epitaxial MgB2 thin films. Both show a temperature dependent zero bias conductance peak and evidence for two superconducting g aps. We report tunneling spectroscopy of superconductor-insulator-superconductor (S-I-S) junctions formed in two ways in addition to normal metal-insulator-superconductor (N-I-S) junctions. We find a gap delta=2.3-2.8 meV, with spectral features and temperature dependence that are consistent between S-I-S junction types. In addition, we observe evidence of a second, larger gap, delta=7.2 meV, consistent with a proposed two-band model.
We use tunable laser based Angle Resolved Photoemission Spectroscopy to study the electronic structure of the multi-band superconductor, MgB2. These results form the base line for detailed studies of superconductivity in multi-band systems. We find t hat the magnitude of the superconducting gap on both sigma bands follows a BCS-like variation with temperature with Delta0 ~7 meV. The value of the gap is isotropic within experimental uncertainty and in agreement with pure a s-wave pairing symmetry. We also observe in-gap states confined to kF of the sigma band that occur at some locations of the sample surface. The energy of this excitation, ~3 meV, is inconsistent with scattering from the pi band.
High-quality epitaxial MgB2 thin films prepared by pulsed laser deposition with Tc = 39 K offer the opportunity to study the anisotropy and robustness of the superconducting state in magnetic fields. We measure the in-plane electrical resistivity of the films in magnetic fields to 60T and estimate the superconducting upper critical field Hc(0) = 24 +- 3 T for field oriented along the c-axis, and Hab(0) = 30 +- 2 T for field in the plane of the film. We find the zero-temperature coherence lengths xi_c(0) = 30 A and xi_ab(0) = 37 A to be shorter than the calculated electronic mean free path l = 100 +- 50 A, which places our films in the clean limit. The observation of such large upper critical fields from clean limit samples, coupled with the relatively small anisotropy, provides strong evidence of the viability of MgB2 as a technologically important superconductor.
Starting from first principles, we show the formation and evolution of superconducting gaps in MgB$_2$ at its ultrathin limit. Atomically thin MgB$_2$ is distinctly different from bulk MgB$_2$ in that surface states become comparable in electronic de nsity to the bulk-like $sigma$- and $pi$-bands. Combining the ab initio electron-phonon coupling with the anisotropic Eliashberg equations, we show that monolayer MgB$_2$ develops three distinct superconducting gaps, on completely separate parts of the Fermi surface due to the emergent surface contribution. These gaps hybridize nontrivially with every extra monolayer added to the film, owing to the opening of additional coupling channels. Furthermore, we reveal that the three-gap superconductivity in monolayer MgB$_2$ is robust over the entire temperature range that stretches up to a considerably high critical temperature of 20 K. The latter can be boosted to $>$50 K under biaxial tensile strain of $sim$ 4%, which is an enhancement stronger than in any other graphene-related superconductor known to date.
151 - T. Masui , S. Lee , S. Tajima 2002
We report resistivity and magnetization of single crystal MgB2, focusing on the broadening of superconducting (SC) transition in magnetic fields. In-plane and out-of-plane resistivity indicate that the broadening of superconducting transition is inde pendent of Lorentz force and that it is merely dependent on the magnetic field direction. In magnetization, diamagnetic signal begins to appear at almost the same temperature as the onset temperature of resistivity transition. These results suggest that the broadening is attributed not to the surface superconductivity but to the superconducting fluctuation or the vortex-liquid picture, owing to the short coherence length and the high transition temperature of MgB2.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا