ترغب بنشر مسار تعليمي؟ اضغط هنا

57 - G. Trinchieri 2012
[Abridged] NGC 5238 and NGC 4756 are the brightest unperturbed elliptical galaxies in their respective loose groups. In the present study we aim at characterizing the properties of the hot gas in the halos of the brightest members and in the environm ent. In NGC 4756 we are also interested in the properties of a substructure identified to the SW and the region connecting the two structures, to search for a physical connection between the two. However, we have to take into account the fact that the group is projected against the bright, X-ray emitting cluster A1361, which heavily contaminates and confuses the emission from the foreground structure. We present a careful analysis of XMM-Newton data of the groups to separate different components. We also present a re-evaluation of the dynamical properties of the systems and . SPH simulations to interpret the results. We find that the X-ray source associated with NGC 4756 indeed sits on top of extended emission from the background cluster A1361, but can be relatively well distinguished from it as a significant excess over it out to rsim150 (~40 kpc). NGC 4756 has an X-ray luminosity of ~10^41 erg/s due to hot gas, with an average temperature of kTsim0.7 keV. We measure a faint diffuse emission also in the region of the subclump to the SW, but more interestingly, we detect gas between the two structures, indicating a possible physical connection. The X-ray emission from NGC 5328 is clearly peaked on the galaxy, also at 10^41 erg/s, and extends to rsim110 kpc. Simulations provide an excellent reproduction of the SED and the global properties of both galaxies, which are caught at two different epochs of the same evolutionary process, with NGC 5328 ~2.5 Gyr younger than NGC 4756.
We report the discovery of a faint (L_x ~ 4 10^37 erg/s, 0.5-2 keV), out-flowing gaseous hot interstellar medium (ISM) in NGC 3379. This represents the lowest X-ray luminosity ever measured from a hot phase of the ISM in a nearby early type galaxy. T he discovery of the hot ISM in a very deep Chandra observation was possible thanks to its unique spectral and spatial signatures, which distinguish it from the integrated stellar X-ray emission, responsible for most of the unresolved emission in the Chandra data. This hot component is found in a region of about 800 pc in radius at the center of the galaxy and has a total mass M~ 3 10^5 solar masses. Independent theoretical prediction of the characteristics of an ISM in this galaxy, based on the intrinsic properti es of NGC 3379, reproduce well the observed luminosity, temperature, and radial distribution and mass of the hot gas, and indicate that the gas is in an outflowing phase, predicted by models but not observed in any system so far.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا