ترغب بنشر مسار تعليمي؟ اضغط هنا

A striking difference between brain-inspired neuromorphic processors and current von Neumann processors architectures is the way in which memory and processing is organized. As Information and Communication Technologies continue to address the need f or increased computational power through the increase of cores within a digital processor, neuromorphic engineers and scientists can complement this need by building processor architectures where memory is distributed with the processing. In this paper we present a survey of brain-inspired processor architectures that support models of cortical networks and deep neural networks. These architectures range from serial clocked implementations of multi-neuron systems to massively parallel asynchronous ones and from purely digital systems to mixed analog/digital systems which implement more biological-like models of neurons and synapses together with a suite of adaptation and learning mechanisms analogous to the ones found in biological nervous systems. We describe the advantages of the different approaches being pursued and present the challenges that need to be addressed for building artificial neural processing systems that can display the richness of behaviors seen in biological systems.
Several analog and digital brain-inspired electronic systems have been recently proposed as dedicated solutions for fast simulations of spiking neural networks. While these architectures are useful for exploring the computational properties of large- scale models of the nervous system, the challenge of building low-power compact physical artifacts that can behave intelligently in the real-world and exhibit cognitive abilities still remains open. In this paper we propose a set of neuromorphic engineering solutions to address this challenge. In particular, we review neuromorphic circuits for emulating neural and synaptic dynamics in real-time and discuss the role of biophysically realistic temporal dynamics in hardware neural processing architectures; we review the challenges of realizing spike-based plasticity mechanisms in real physical systems and present examples of analog electronic circuits that implement them; we describe the computational properties of recurrent neural networks and show how neuromorphic Winner-Take-All circuits can implement working-memory and decision-making mechanisms. We validate the neuromorphic approach proposed with experimental results obtained from our own circuits and systems, and argue how the circuits and networks presented in this work represent a useful set of components for efficiently and elegantly implementing neuromorphic cognition.
Conventional neuro-computing architectures and artificial neural networks have often been developed with no or loose connections to neuroscience. As a consequence, they have largely ignored key features of biological neural processing systems, such a s their extremely low-power consumption features or their ability to carry out robust and efficient computation using massively parallel arrays of limited precision, highly variable, and unreliable components. Recent developments in nano-technologies are making available extremely compact and low-power, but also variable and unreliable solid-state devices that can potentially extend the offerings of availing CMOS technologies. In particular, memristors are regarded as a promising solution for modeling key features of biological synapses due to their nanoscale dimensions, their capacity to store multiple bits of information per element and the low energy required to write distinct states. In this paper, we first review the neuro- and neuromorphic-computing approaches that can best exploit the properties of memristor and-scale devices, and then propose a novel hybrid memristor-CMOS neuromorphic circuit which represents a radical departure from conventional neuro-computing approaches, as it uses memristors to directly emulate the biophysics and temporal dynamics of real synapses. We point out the differences between the use of memristors in conventional neuro-computing architectures and the hybrid memristor-CMOS circuit proposed, and argue how this circuit represents an ideal building block for implementing brain-inspired probabilistic computing paradigms that are robust to variability and fault-tolerant by design.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا