ترغب بنشر مسار تعليمي؟ اضغط هنا

We derive the projected surface mass distribution Sigma_M for spherically symmetric mass distributions having an arbitrary rotation curve. For a galaxy with a flat rotation curve and an ISM disk having a constant Toomre stability parameter, Q, the IS M surface mass density Sigma_g as well as Sigma_M both fall off as 1/R. We use published data on a sample of 20 well studied galaxies to show that ISM disks do maintain a constant Q over radii usually encompassing more than 50% of the HI mass. The power law slope in Sigma_g covers a range of exponents and is well correlated with the slope in the epicyclic frequency. This implies that the ISM disk is responding to the potential, and hence that secular evolution is important for setting the structure of ISM disks. We show that the gas to total mass ratio should be anti-correlated with the maximum rotational velocity, and that the sample falls on the expected relationship. A very steep fall off in Sigma_g is required at the outermost radii to keep the mass and angular momentum content finite for typical rotation curve shapes, and is observed. The observation that HI traces dark matter over a significant range of radii in galaxies is thus due to the disks stabilising themselves in a normal dark matter dominated potential. This explanation is consistent with the cold dark matter paradigm.
Much of our understanding of modern astrophysics rest on the notion that the Initial Mass Function (IMF) is universal. Our observations of a sample of HI-selected galaxies in the light of H-alpha and the far-ultraviolet (FUV) challenge this result. T he flux ratio H-alpha/FUV from these star formation tracers shows strong correlations with surface-brightness in H-alpha and the R band: Low Surface Brightness galaxies have lower H-alpha/FUV ratios compared to High Surface Brightness galaxies as well as compared to expectations from equilibrium models of constant star formation rate using commonly favored IMF parameters. I argue against recent claims in the literature that attribute these results to errors in the dust corrections, the micro-history of star formation, sample issues or escaping ionizing photons. Instead, the most plausible explanation for the correlations is the systematic variations of the upper mass limit and/or the slope of the IMF. I present a plausible physical scenario for producing the IMF variations, and suggest future research directions.
Many results in modern astrophysics rest on the notion that the Initial Mass Function (IMF) is universal. Our observations of HI selected galaxies in the light of H-alpha and the far-ultraviolet (FUV) challenge this notion. The flux ratio H-alpha/FUV from these two star formation tracers shows strong correlations with the surface-brightness in H-alpha and the R band: Low Surface Brightness (LSB) galaxies have lower ratios compared to High Surface Brightness galaxies and to expectations from equilibrium star formation models using commonly favored IMF parameters. Weaker but significant correlations of H-alpha/FUV with luminosity, rotational velocity and dynamical mass are found as well as a systematic trend with morphology. The correlated variations of H-alpha/FUV with other global parameters are thus part of the larger family of galaxy scaling relations. The H-alpha/FUV correlations can not be due to dust correction errors, while systematic variations in the star formation history can not explain the trends with both H-alpha and R surface brightness. LSB galaxies are unlikely to have a higher escape fraction of ionizing photons considering their high gas fraction, and color-magnitude diagrams. The most plausible explanation for the correlations are systematic variations of the upper mass limit and/or slope of the IMF at the upper end. We outline a scenario of pressure driving the correlations by setting the efficiency of the formation of the dense star clusters where the highest mass stars form. Our results imply that the star formation rate measured in a galaxy is highly sensitive to the tracer used in the measurement. A non-universal IMF also calls into question the interpretation of metal abundance patterns in dwarf galaxies and star formation histories derived from color magnitude diagrams. Abridged.
43 - Gerhardt R. Meurer , 2008
We show data from the Survey of Ionization in Neutral Gas Galaxies (SINGG) and Survey of Ultraviolet emission in Neutral Gas Galaxies (SUNGG) which survey the star formation properties of HI selected galaxies as traced by H-alpha and ultraviolet emis sion, respectively. The correlations found demonstrate a strong relationship between the neutral ISM, young massive stars, and the evolved stellar populations. For example the correlation between R band surface brightness and the HI cycling time is tighter than the Kennicutt-Schmidt Star Formation Law. Other scaling relations from SINGG give strong direct confirmation of the downsizing scenario: low mass galaxies are more gaseous and less evolved into stars than high mass galaxies. There are strong variations in the H-alpha to UV flux ratios within and between galaxies. The only plausible explanations for this result are that either the escape fraction of ionizing photons or the upper end of the IMF varies with galaxy mass. We argue for the latter interpretation, although either result has major implications for astrophysics. A detailed dissection of the massive star content in the extended HI disk of NGC2915 provides a consistent picture of continuing star formation with a truncated or steep IMF, while other GALEX results indicate that star formation edges seen in Halpha are not always apparent in the UV. These and other recent results settle some old questions but open many new questions about star formation and its relation to the ISM.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا