ترغب بنشر مسار تعليمي؟ اضغط هنا

A remarkably simple result is found for the optimal protocol of drivings for a general two-level Hamiltonian which transports a given initial state to a given final state in minimal time. If one of the three possible drivings is unconstrained in stre ngth the problem is analytically completely solvable. A surprise arises for a class of states when one driving is bounded by a constant $c$ and the other drivings are constant. Then, for large $c$, the optimal driving is of type bang-off-bang and for increasing $c$ one recovers the unconstrained result. However, for smaller $c$ the optimal driving can suddenly switch to bang-bang type. It is also shown that for general states one may have a multistep protocol. The present paper explicitly proves and considerably extends the authors results contained in Phys. Rev. Lett. {bf 111}, 260501 (2013).
A remarkably simple result is derived for the minimal time $T_{rm min}$ required to drive a general initial state to a final target state by a Landau-Zener type Hamiltonian or, equivalently, by time-dependent laser driving. The associated protocol is also derived. A surprise arises for some states when the interaction strength is assumed to be bounded by a constant $c$. Then, for large $c$, the optimal driving is of type bang-off-bang and for increasing $c$ one recovers the unconstrained result. However, for smaller $c$ the optimal driving can suddenly switch to bang-bang type. We discuss the notion of quantum speed limit time.
Given an ensemble of systems in an unknown state, as well as an observable $hat A$ and a physical apparatus which performs a measurement of $hat A$ on the ensemble, whose detailed working is unknown (black box), how can one test whether the Luders or von Neumann reduction rule applies?
Through tunneling, or barrier penetration, small wavefunction tails can enter a finitely shielded cylinder with a magnetic field inside. When the shielding increases to infinity the Lorentz force goes to zero together with these tails. However, it is shown, by considering the radial derivative of the wavefunction on the cylinder surface, that a flux dependent force remains. This force explains in a natural way the Aharonov-Bohm effect in the idealized case of infinite shielding.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا