ترغب بنشر مسار تعليمي؟ اضغط هنا

Driving at the quantum speed limit: Optimal control of a two-level system

281   0   0.0 ( 0 )
 نشر من قبل Gerhard C. Hegerfeldt
 تاريخ النشر 2013
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

A remarkably simple result is derived for the minimal time $T_{rm min}$ required to drive a general initial state to a final target state by a Landau-Zener type Hamiltonian or, equivalently, by time-dependent laser driving. The associated protocol is also derived. A surprise arises for some states when the interaction strength is assumed to be bounded by a constant $c$. Then, for large $c$, the optimal driving is of type bang-off-bang and for increasing $c$ one recovers the unconstrained result. However, for smaller $c$ the optimal driving can suddenly switch to bang-bang type. We discuss the notion of quantum speed limit time.



قيم البحث

اقرأ أيضاً

Quantum mechanics establishes a fundamental bound for the minimum evolution time between two states of a given system. Known as the quantum speed limit (QSL), it is a useful tool in the context of quantum control, where the speed of some control prot ocol is usually intended to be as large as possible. While QSL expressions for time-independent hamiltonians have been well studied, the time-dependent regime has remained somewhat unexplored, albeit being usually the relevant problem to be compared with when studying systems controlled by external fields. In this paper we explore the relation between optimal times found in quantum control and the QSL bound, in the (relevant) time-dependent regime, by discussing the ubiquitous two-level Landau-Zener type hamiltonian.
A remarkably simple result is found for the optimal protocol of drivings for a general two-level Hamiltonian which transports a given initial state to a given final state in minimal time. If one of the three possible drivings is unconstrained in stre ngth the problem is analytically completely solvable. A surprise arises for a class of states when one driving is bounded by a constant $c$ and the other drivings are constant. Then, for large $c$, the optimal driving is of type bang-off-bang and for increasing $c$ one recovers the unconstrained result. However, for smaller $c$ the optimal driving can suddenly switch to bang-bang type. It is also shown that for general states one may have a multistep protocol. The present paper explicitly proves and considerably extends the authors results contained in Phys. Rev. Lett. {bf 111}, 260501 (2013).
We experimentally study the time-optimal construction of arbitrary single-qubit rotations under a single strong driving field of finite amplitude. Using radiation-dressed states of nitrogen vacancy centers in diamond, we realize a strongly-driven two -level system and achieve driving frequencies four times larger than its Larmor frequency. We implement time optimal universal rotations on this system, characterize their performance using quantum process tomography, and demonstrate a dual-axis ac magnetometry sequence with pulses at sub-Larmor time scales. Our results pave the way for applying fast qubit control and high-density pulse schemes in the fields of quantum information processing and quantum metrology.
We present experimental results on the preparation of a desired quantum state in a two-level system with the maximum possible fidelity using driving protocols ranging from generalizations of the linear Landau-Zener protocol to transitionless driving protocols that ensure perfect following of the instantaneous adiabatic ground state. We also study the minimum time needed to achieve a target fidelity and explore and compare the robustness of some of the protocols against parameter variations simulating a possible experimental uncertainty. In our experiments, we realize a two-level model system using Bose-Einstein condensates inside optical lattices, but the results of our investigation should hold for any quantum system that can be approximated by a two-level system.
Quantum optimal control represents a powerful technique to enhance the performance of quantum experiments by engineering the controllable parameters of the Hamiltonian. However, the computational overhead for the necessary optimization of these contr ol parameters drastically increases as their number grows. We devise a novel variant of a gradient-free optimal-control method by introducing the idea of phase-modulated driving fields, which allows us to find optimal control fields efficiently. We numerically evaluate its performance and demonstrate the advantages over standard Fourier-basis methods in controlling an ensemble of two-level systems showing an inhomogeneous broadening. The control fields optimized with the phase-modulated method provide an increased robustness against such ensemble inhomogeneities as well as control-field fluctuations and environmental noise, with one order of magnitude less of average search time. Robustness enhancement of single quantum gates is also achieved by the phase-modulated method. Under environmental noise, an XY-8 sequence constituted by optimized gates prolongs the coherence time by $50%$ compared with standard rectangular pulses in our numerical simulations, showing the application potential of our phase-modulated method in improving the precision of signal detection in the field of quantum sensing.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا