ترغب بنشر مسار تعليمي؟ اضغط هنا

436 - A. Pourret , D. Aoki , M. Boukahil 2013
New thermoelectric power (TEP) measurements on prototype heavy-fermion compounds close to magnetic quantum criticality are presented. The highly sensitive technique of TEP is an unique tool to reveal Fermi surface instabilities, referred here as Lifs hitz transitions. The first focus is on the Ising CeRu2Si2 series. Doping CeRu2Si2 with Rh produces a decoupling between the first order metamagnetic transition and the pseudo-metamagnetism observed in the pure compound. Comparison is made with the case of YbRh2Si2 which is often considered as the archetype of local quantum criticality by contrast to CeRu2Si2, taken as an example of spin-density wave criticality. Up to now for ferromagnetic materials showing ferromagnetic wings, no simple case appears where the Fermi surface is preserved between the ferromagnetic and paramagnetic phases. An open issue is the consequence of Lifshitz transitions on superconductivity in these multiband systems.
We report thermoelectric and resitivity measurements of antiferromagnetic heavy fermion compound YRh2Si2 at low temperatures down and under high magnetic field. At low temperature, the thermoelectric power and the resistivity present several distinct anomalies as a function of field around H_0 ~ 9.5 T when the magnetic polarization reaches a critical value. The anomalies are accompanied with a change of sign from negative at low magnetic field to positive at high field (H>H_0) and are resulting from a Lifshitz-type topological transition of the Fermi surface. A logarithmic divergence of S/T at T to 0 K just above H_0 (H=11.5 T) is quite comparable to the well known divergence of S/T in the temperature range above the antiferromagnetic order at H=0 T referred to as non Fermi liquid behavior. The transition will be compared to the well characterized Fermi surface change in CeRu2Si2 at its pseudo-metamagnetic transition.
We discuss recent results on the heavy fermion superconductor CeRhIn$_5$ which presents ideal conditions to study the strong coupling between the suppression of antiferromagnetic order and the appearance of unconventional superconductivity. The appea rance of superconductivity as function of pressure is strongly connected to the suppression of the magnetic order. Under magnetic field, the re-entrance of magnetic order inside the superconducting state shows that antiferromagnetism nucleates in the vortex cores. The suppression of antiferromagnetism in CeRhIn$_5$ by Sn doping is compared to that under hydrostatic pressure.
A brief review on major advances in heavy fermion physics is presented including the Ce metal phase diagram, the huge effective mass detected in CeAl3, and the successive discoveries of unconventional superconductivity in CeCu2Si2 and three U based c ompounds, UBe13, UPt3 and URu2Si2. In order to track the origin of the huge effective mass, the case of intermediate valence compounds is discussed with emphasis of the differences between Yb and Ce materials. The formation of the effective mass is analyzed by two regular- and singular-part contributions. Examples are given for both, antiferromagnetic (CeRu2Si2 series) and ferromagnetic tricriticalities (UGe2). Pressure and magnetic-field studies on the ferromagnetic superconductor URhGe illustrate the role of the singular effective mass enhancement on the superconducting pairing. The discovery of the Ce-115 material gives the opportunity to study deeply the interplay of antiferromagnetism and superconductivity. This is clearly demonstrated by field re-entrance AF inside the SC phase just below the superconducting upper critical field (Hc2) for CeCoIn5 or on both side of Hc2 within a restricted pressure window for CeRhIn5. The present status of the search for the hidden-order parameter of URu2Si2 is given and we emphasize that it may correspond to a lattice unit-cell doubling which leads to a drastic change in the band structure and spin dynamic, with the possibility of competition between multipolar ordering and antiferromagnetism.
77 - J. Flouquet , D. Aoki , W. Knafo 2010
Emphasis is given on the observation of a convergence to a critical value of the effective mass of a heavy fermion compound by tuning it through a quantum instability either by applying pressure or magnetic field from an antiferromagnetic (AF) to a p aramagnetic (PM) ground state. Macroscopic and microscopic results are discussed and the main message is to rush to the discovery of an ideal material whose Fermi surface could be fully observed on both sides of each quantum phase transition.
The Ce compounds CeCoIn$_5$ and CeRhIn$_5$ are ideal model systems to study the competition of antiferromagnetism (AF) and superconductivity (SC). Here we discuss the pressure--temperature and magnetic field phase diagrams of both compounds. In CeRhI n$_5$ the interesting observation is that in zero magnetic field a coexistence AF+SC phase exist inside the AF phase below the critical pressure $p_{rm c}^star approx 2$ GPa. Above $p_{rm c}^star$ AF is suppressed in zero field but can be re-induced by applying a magnetic field. The collapse of AF under pressure coincides with the abrupt change of the Fermi surface. In CeCoIn$_5$ a new phase appears at low temperatures and high magnetic field (LTHF) which vanishes at the upper critical field $H_{rm c2}$. In both compounds the paramagnetic pair breaking effect dominates at low temperature. We discuss the evolution of the upper critical field under high pressure of both compounds and propose a simple picture of the glue of reentrant magnetism to the upper critical field in order to explain the interplay of antiferromagnetic order and superconductivity.
51 - A. Villaume , D. Aoki , Y. Haga 2007
The thermal expansion of the heavy fermion compound CeRh2Si2 has been measured under pressure as a function of temperature using strain gages. A large anomaly associated to the Neel temperature has been detected even above the suspected critical pres sure Pc = 1.05 GPa where no indication of antiferromagnetism has been observed in calorimetry experiments sensitive to the entropy change. An unexpected feature is the pressure slowdown of the antiferromagnetic-paramagnetic transition by comparison to the fast pressure collapse predicted for homogeneous first order quantum phase transition with one unique pressure singularity at Pc. A large pressure dependance is observed in the anisotropy of the thermal expansion measured parallel or perpendicular to the c axis of this tetragonal crystal. The Fermi surface reconstruction associated to the first order transition produces quite different pressure response in the transport scattering measured along different crystallographic directions. A brief discussion is made on other examples of first order quantum transitions in strongly correlated electronic systems : MnSi and CeCoIn5.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا