ترغب بنشر مسار تعليمي؟ اضغط هنا

228 - Chao-Kai Li , Xu-Ping Yao , 2021
The type-II terminated 1T-TaS$_2$ surface of a three-dimensional 1T-TaS$_2$ bulk material realizes the effective spin-1/2 degree of freedom on each David-star cluster with ${T^2=-1}$ such that the time reversal symmetry is realized anomalously, despi te the bulk three-dimensional 1T-TaS$_2$ material has an even number of electrons per unit cell with ${T^2=+1}$. This surface is effectively viewed as a spin-1/2 triangular lattice magnet, except with a symmetry-protected topological bulk. We further propose this surface termination realizes a spinon Fermi surface spin liquid with the surface fractionalization but with a non-exotic three-dimensional bulk. We analyze possible experimental consequences of the type-II terminated surface spin liquid.
We propose a method to compute the scattering angle for classical black hole scattering directly from two massive particle irreducible diagrams in a heavy-mass effective field theory approach to general relativity, without the need of subtracting ite ration terms. The amplitudes in this effective theory are constructed using a recently proposed novel colour-kinematic/double copy for tree-level two-scalar, multi-graviton amplitudes, where the BCJ numerators are gauge invariant and local with respect to the massless gravitons. These tree amplitudes, together with graviton tree amplitudes, enter the construction of the required $D$-dimensional loop integrands and allow for a direct extraction of contributions relevant for classical physics. In particular the soft/heavy-mass expansions of full integrands is circumvented, and all iterating contributions can be dropped from the get go. We use this method to compute the scattering angle up to third post-Minkowskian order in four dimensions, including radiation reaction contributions, also providing the expression of the corresponding integrand in $D$ dimensions.
Higher-order topological insulators (HOTIs) are recently discovered topological phases, possessing symmetry-protected corner states with fractional charges. An unexpected connection between these states and the seemingly unrelated phenomenon of bound states in the continuum (BICs) was recently unveiled. When nonlinearity is added to a HOTI system, a number of fundamentally important questions arise. For example, how does nonlinearity couple higher-order topological BICs with the rest of the system, including continuum states? In fact, thus far BICs in nonlinear HOTIs have remained unexplored. Here, we demonstrate the interplay of nonlinearity, higher-order topology, and BICs in a photonic platform. We observe topological corner states which, serendipitously, are also BICs in a laser-written second-order topological lattice. We further demonstrate nonlinear coupling with edge states at a low nonlinearity, transitioning to solitons at a high nonlinearity. Theoretically, we calculate the analog of the Zak phase in the nonlinear regime, illustrating that a topological BIC can be actively tuned by both focusing and defocusing nonlinearities. Our studies are applicable to other nonlinear HOTI systems, with promising applications in emerging topology-driven devices.
The van der Waals magnets provide an ideal platform to explore quantum magnetism both theoretically and experimentally. We study a classical J1-J2 model with distinct magnetic degrees of freedom on a honeycomb lattice that can be realized in some van der Waals magnets. We find that the model develops a spiral spin liquid (SSL), a massively degenerated state with spiral contours in the reciprocal space, not only for continuous spin vectors, XY and Heisenberg spins but also for Ising spin moments. Surprisingly, the SSL is more robust for the Ising case, and the shape of the spiral contours is pinned to an emergent kagome structure at the low temperatures for different J2. The spin-chirality order for the continuous spins at the finite temperatures is further connected to the electric polarization via the inverse Dzyaloshinski-Moriya mechanism. These results provide a guidance for the experimental realization of 2D SSLs, and the SSL can further be used as the mother state to generate skyrmions that are promising candidates for future memory devices.
Single image super-resolution (SISR), which aims to reconstruct a high-resolution (HR) image from a low-resolution (LR) observation, has been an active research topic in the area of image processing in recent decades. Particularly, deep learning-base d super-resolution (SR) approaches have drawn much attention and have greatly improved the reconstruction performance on synthetic data. Recent studies show that simulation results on synthetic data usually overestimate the capacity to super-resolve real-world images. In this context, more and more researchers devote themselves to develop SR approaches for realistic images. This article aims to make a comprehensive review on real-world single image super-resolution (RSISR). More specifically, this review covers the critical publically available datasets and assessment metrics for RSISR, and four major categories of RSISR methods, namely the degradation modeling-based RSISR, image pairs-based RSISR, domain translation-based RSISR, and self-learning-based RSISR. Comparisons are also made among representative RSISR methods on benchmark datasets, in terms of both reconstruction quality and computational efficiency. Besides, we discuss challenges and promising research topics on RSISR.
82 - Gang Chen , Maosong Sun , 2020
In artificial intelligence (AI), knowledge is the information required by an intelligent system to accomplish tasks. While traditional knowledge bases use discrete, symbolic representations, detecting knowledge encoded in the continuous representatio ns learned from data has received increasing attention recently. In this work, we propose a method for building a continuous knowledge base (CKB) that can store knowledge imported from multiple, diverse neural networks. The key idea of our approach is to define an interface for each neural network and cast knowledge transferring as a function simulation problem. Experiments on text classification show promising results: the CKB imports knowledge from a single model and then exports the knowledge to a new model, achieving comparable performance with the original model. More interesting, we import the knowledge from multiple models to the knowledge base, from which the fused knowledge is exported back to a single model, achieving a higher accuracy than the original model. With the CKB, it is also easy to achieve knowledge distillation and transfer learning. Our work opens the door to building a universal continuous knowledge base to collect, store, and organize all continuous knowledge encoded in various neural networks trained for different AI tasks.
41 - Gang Chen 2020
Most of the neural networks (NNs) learned via state-of-the-art machine learning techniques are black-box models. For a widespread success of machine learning in science and engineering, it is important to develop new NN architectures to effectively e xtract high-level mathematical knowledge from complex datasets. Motivated by this understanding, this paper develops a new NN architecture called the Gumbel-Max Equation Learner (GMEQL) network. Different from previously proposed Equation Learner (EQL) networks, GMEQL applies continuous relaxation to the network structure via the Gumbel-Max trick and introduces two types of trainable parameters: structure parameters and regression parameters. This paper also proposes a two-stage training process with new techniques to train structure parameters in both online and offline settings based on an elite repository. On 8 benchmark symbolic regression problems, GMEQL is experimentally shown to outperform several cutting-edge machine learning approaches.
94 - Gang Chen 2020
We point out the generic competition between the Hunds coupling and the spin-orbit coupling in correlated materials, and this competition leads to an electronic dilemma between the Hunds metal and the relativistic insulators. Hunds metals refer to th e fate of the would-be insulators where the Hunds coupling suppresses the correlation and drives the systems into correlated metals. Relativistic Mott insulators refer to the fate of the would-be metals where the relativistic spin-orbit coupling enhances the correlation and drives the systems into Mott insulators. These contradictory trends are naturally present in many correlated materials. We study the competition between Hunds coupling and spin-orbit coupling in correlated materials and explore the interplay and the balance from these two contradictory trends. The system can become a spin-orbit-coupled Hunds metal or a Hunds assisted relativistic Mott insulator. Our observation could find a broad application and relevance to many correlated materials with multiple orbitals.
We propose quenched disorders could bring novel quantum excitations and models to certain quantum magnets. Motivated by the recent experiments on the quantum Ising magnet TmMgGaO$_4$, we explore the effects of the quenched disorder and the interlayer coupling in this triangular lattice Ising antiferromagnet. It is pointed out that the weak quenched (non-magnetic) disorder would convert the emergent 2D Berezinskii-Kosterlitz-Thouless (BKT) phase and the critical region into a gauge glass. There will be an emergent Halperin-Saslow mode associated with this gauge glass. Using the Imry-Ma argument, we further explain the fate of the finite-field $C_3$ symmetry breaking transition at the low temperatures. The ferromagnetic interlayer coupling would suppress the BKT phase and generate a tiny ferromagnetism. With the quenched disorders, this interlayer coupling changes the 2D gauge glass into a 3D gauge glass, and the Halperin-Saslow mode persists. This work merely focuses on addressing a phase regime in terms of emergent U(1) gauge glass behaviors and hope to inspire future works and thoughts in weakly disordered frustrated magnets in general.
32 - Yong Hao Gao , Gang Chen 2020
Despite the apparent ubiquity and variety of quantum spin liquids in theory, experimental confirmation of spin liquids remains to be a huge challenge. Motivated by the recent surge of evidences for spin liquids in a series of candidate materials, we highlight the experimental schemes, involving the thermal Hall transport and spectrum measurements, that can result in smoking-gun signatures of spin liquids beyond the usual ones. For clarity, we investigate the square lattice spin liquids and theoretically predict the possible phenomena that may emerge in the corresponding spin liquids candidates. The mechanisms for these signatures can be traced back to either the intrinsic characters of spin liquids or the external field-driven behaviors. Our conclusion does not depend on the geometry of lattices and can broadly apply to other relevant spin liquids.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا