ترغب بنشر مسار تعليمي؟ اضغط هنا

45 - Gabor Worseck 2014
We have obtained spectra of 163 quasars at $z_mathrm{em}>4.4$ with the Gemini Multi Object Spectrometers on the Gemini North and South telescopes, the largest publicly available sample of high-quality, low-resolution spectra at these redshifts. From this homogeneous data set, we generated stacked quasar spectra in three redshift intervals at $zsim 5$. We have modelled the flux below the rest-frame Lyman limit ($lambda_mathrm{r}<912$AA) to assess the mean free path $lambda_mathrm{mfp}^{912}$ of the intergalactic medium to HI-ionizing radiation. At mean redshifts $z_mathrm{q}=4.56$, 4.86 and 5.16, we measure $lambda_mathrm{mfp}^{912}=(22.2pm 2.3, 15.1pm 1.8, 10.3pm 1.6)h_{70}^{-1}$ proper Mpc with uncertainties dominated by sample variance. Combining our results with $lambda_mathrm{mfp}^{912}$ measurements from lower redshifts, the data are well modelled by a simple power-law $lambda_mathrm{mfp}^{912}=A[(1+z)/5]^eta$ with $A=(37pm 2)h_{70}^{-1}$ Mpc and $eta = -5.4pm 0.4$ between $z=2.3$ and $z=5.5$. This rapid evolution requires a physical mechanism -- beyond cosmological expansion -- which reduces the cosmic effective Lyman limit opacity. We speculate that the majority of HI Lyman limit opacity manifests in gas outside galactic dark matter haloes, tracing large-scale structures (e.g. filaments) whose average density (and consequently neutral fraction) decreases with cosmic time. Our measurements of the strongly redshift-dependent mean free path shortly after the completion of HI reionization serve as a valuable boundary condition for numerical models thereof. Having measured $lambda_mathrm{mfp}^{912}approx 10$ Mpc at $z=5.2$, we confirm that the intergalactic medium is highly ionized by that epoch and that the redshift evolution of the mean free path does not show a break that would indicate a recent end to HI reionization.
58 - Gabor Worseck 2011
We report on the detection of strongly varying intergalactic HeII absorption in HST/COS spectra of two z~3 quasars. From our homogeneous analysis of the HeII absorption in these and three archival sightlines, we find a marked increase in the mean HeI I effective optical depth from tau~1 at z~2.3 to tau>5 at z~3.2, but with a large scatter of 2< tau <5 at 2.7< z <3 on scales of ~10 proper Mpc. This scatter is primarily due to fluctuations in the HeII fraction and the HeII-ionizing background, rather than density variations that are probed by the co-eval HI forest. Semianalytic models of HeII absorption require a strong decrease in the HeII-ionizing background to explain the strong increase of the absorption at z>2.7, probably indicating HeII reionization was incomplete at z>2.7. Likewise, recent three-dimensional numerical simulations of HeII reionization qualitatively agree with the observed trend only if HeII reionization completes at z=2.7 or even below, as suggested by a large tau>3 in two of our five sightlines at z<2.8. By doubling the sample size at 2.7< z <3, our newly discovered HeII sightlines for the first time probe the diversity of the second epoch of reionization when helium became fully ionized.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا