ترغب بنشر مسار تعليمي؟ اضغط هنا

The End of Helium Reionization at z~2.7 Inferred from Cosmic Variance in HST/COS HeII Lyman Alpha Absorption Spectra

96   0   0.0 ( 0 )
 نشر من قبل G\\'abor Worseck
 تاريخ النشر 2011
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Gabor Worseck




اسأل ChatGPT حول البحث

We report on the detection of strongly varying intergalactic HeII absorption in HST/COS spectra of two z~3 quasars. From our homogeneous analysis of the HeII absorption in these and three archival sightlines, we find a marked increase in the mean HeII effective optical depth from tau~1 at z~2.3 to tau>5 at z~3.2, but with a large scatter of 2< tau <5 at 2.7< z <3 on scales of ~10 proper Mpc. This scatter is primarily due to fluctuations in the HeII fraction and the HeII-ionizing background, rather than density variations that are probed by the co-eval HI forest. Semianalytic models of HeII absorption require a strong decrease in the HeII-ionizing background to explain the strong increase of the absorption at z>2.7, probably indicating HeII reionization was incomplete at z>2.7. Likewise, recent three-dimensional numerical simulations of HeII reionization qualitatively agree with the observed trend only if HeII reionization completes at z=2.7 or even below, as suggested by a large tau>3 in two of our five sightlines at z<2.8. By doubling the sample size at 2.7< z <3, our newly discovered HeII sightlines for the first time probe the diversity of the second epoch of reionization when helium became fully ionized.



قيم البحث

اقرأ أيضاً

74 - Kirill Makan 2020
We present new high-resolution (R~14,000) spectra of the two brightest HeII-transparent quasars in the far-UV (FUV) at z>3.5, HE2QSJ2311-1417 (z=3.70) and HE2QSJ1630+0435 (z=3.81), obtained with the Cosmic Origins Spectrograph (COS) on the Hubble Spa ce Telescope (HST). In the predominantly saturated HeII absorption spectra, both sightlines show several isolated resolved (full width at half maximum FWHM>50 km/s) transmission spikes in HeII Ly$alpha$ and HeII Ly$beta$. The incidence of such spikes decreases with increasing redshift, but both sightlines show significant spikes at z>3.5, signaling the presence of fully ionized regions in the z>3.5 intergalactic medium (IGM). We employ an automated algorithm to compare the number of detected HeII transmission spikes to predictions from mock spectra created from the outputs of a cubic (100/h cMpc)^3 optically thin Nyx hydrodynamical simulation, assuming a range of UV background photoionization rates $Gamma_mathrm{HeII}$. From the incidence of Ly$alpha$ and Ly$beta$ transmission spikes we infer similar photoionization rates of $Gamma_mathrm{HeII}=2.0^{+0.6}_{-0.5}times 10^{-15}$s$^{-1}$ at 3.51<z<3.66 and $Gamma_mathrm{HeII}=0.9pm0.3 times 10^{-15}$s$^{-1}$ at 3.460<z<3.685, respectively. Because the transmission spikes indicate fully ionized regions at z>3.5 along both lines of sight, our observations provide further evidence that HeII reionization had substantially progressed at these redshifts.
In La Plante et al. (2017), we presented a new suite of hydrodynamic simulations with the aim of accurately capturing the process of helium II reionization. In this paper, we discuss the observational signatures present in the He II Ly$alpha$ forest. We show that the effective optical depth of the volume $tau_mathrm{eff}$ is not sufficient for capturing the ionization state of helium II, due to the large variance inherent in sightlines. However, the He II flux PDF can be used to determine the timing of helium II reionization. The amplitude of the one-dimensional flux power spectrum can also determine the ionization state of helium II. We show that even given the currently limited number of observations ($sim$50 sightlines), measurements of the flux PDF can yield information about helium II reionization. Further, measurements using the one-dimensional power spectrum can provide clear indications of the timing of reionization, as well as the relative bias of sources of ionizing radiation.
We present IRAM PdBI observations of the CO(3-2) and CO(5-4) line transitions from a Ly-alpha blob at z~2.7 in order to investigate the gas kinematics, determine the location of the dominant energy source, and study the physical conditions of the mol ecular gas. CO line and dust continuum emission are detected at the location of a strong MIPS source that is offset by ~1.5 from the Ly-alpha peak. Neither of these emission components is resolved with the 1.7 beam, showing that the gas and dust are confined to within ~7kpc from this galaxy. No millimeter source is found at the location of the Ly-alpha peak, ruling out a central compact source of star formation as the power source for the Ly-alpha emission. Combined with a spatially-resolved spectrum of Ly-alpha and HeII, we constrain the kinematics of the extended gas using the CO emission as a tracer of the systemic redshift. Near the MIPS source, the Ly-alpha profile is symmetric and its line center agrees with that of CO line, implying that there are no significant bulk flows and that the photo-ionization from the MIPS source might be the dominant source of the Ly-alpha emission. In the region near the Ly-alpha peak, the gas is slowly receding (~100km/s) with respect to the MIPS source, thus making the hyper-/superwind hypothesis unlikely. We find a sub-thermal line ratio between two CO transitions, I_CO(5-4)/I_CO(3-2)=0.97+/-0.21. This line ratio is lower than the average values found in high-z SMGs and QSOs, but consistent with the value found in the Galactic center, suggesting that there is a large reservoir of low-density molecular gas that is spread over the MIPS source and its vicinity.
We present diffuse Lyman-alpha halos (LAHs) identified in the composite Subaru narrowband images of 100-3600 Lyman-alpha emitters (LAEs) at z=2.2, 3.1, 3.7, 5.7, and 6.6. First, we carefully examine potential artifacts mimicking LAHs that include a l arge-scale point-spread function (PSF) made by instrumental and atmospheric effects. Based on our critical test with composite images of non-LAE samples whose narrowband-magnitude and source-size distributions are the same as our LAE samples, we confirm that no artifacts can produce a diffuse extended feature similar to our LAHs. After this test, we measure the scale lengths of exponential profile for the LAHs estimated from our z=2.2-6.6 LAE samples of L(Lyman-alpha) > 2 x 10^42 erg s^-1. We obtain the scale lengths of ~ 5-10 kpc at z=2.2-5.7, and find no evolution of scale lengths in this redshift range beyond our measurement uncertainties. Combining this result and the previously-known UV-continuum size evolution, we infer that the ratio of LAH to UV-continuum sizes is nearly constant at z=2.2-5.7. The scale length of our z=6.6 LAH is larger than 5-10 kpc just beyond the error bar, which is a hint that the scale lengths of LAHs would increase from z=5.7 to 6.6. If this increase is confirmed by future large surveys with significant improvements of statistical and systematical errors, this scale length change at z > 6 would be a signature of increasing fraction of neutral hydrogen scattering Lyman-alpha photons, due to cosmic reionization.
The high redshift Lyman-alpha forest, in particular the Gunn-Peterson trough, is the most unambiguous signature of the neutral to ionized transition of the intergalactic medium (IGM) taking place during the Epoch of Reionization (EoR). Recent studies , e.g. Kulkarni et al. (2019a) and Keating et al. (2019), showed that reproducing the observed Lyman-alpha opacities after overlap required a non-monotonous evolution of cosmic emissivity: rising, peaking at z=6, and then decreasing onwards to z=4. Such an evolution is puzzling considering galaxy build-up and the cosmic star formation rate are still continously on the rise at these epochs. Here, we use new RAMSES-CUDATON simulations to show that such a peaked evolution may occur naturally in a fully coupled radiation-hydrodynamical framework. In our fiducial run, cosmic emissivity at z>6 is dominated by a low mass (M$_{rm DM}<2.10^9$ M$_{odot}$), high escape fraction halo population, driving reionization, up to overlap. Approaching z=6, this population is radiatively suppressed due to the rising ionizing UV background, and its emissivity drops. In the meantime, the high mass halo population builds up and its emissivity rises, but not fast enough to compensate the dimming of the low mass haloes, because of low escape fractions. The combined ionizing emissivity of these two populations therefore naturally results in a rise and fall of the cosmic emissivity, from z=12 to z=4, with a peak at z=6. An alternative run, which features higher escape fractions for the high mass haloes and later suppression at low mass, leads to overshooting the ionizing rate, over-ionizing the IGM and therefore too low Lyman-alpha opacities.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا