ترغب بنشر مسار تعليمي؟ اضغط هنا

We present radio and infrared observations indicating on-going star formation activity inside the $sim2-5$ pc circumnuclear ring at the Galactic center. Collectively these measurements suggest a continued disk-based mode of on-going star formation ha s taken place near Sgr A* over the last few million years. First, VLA observations with spatial resolution 2.17$times0.81$ reveal 13 water masers, several of which have multiple velocity components. The presence of interstellar water masers suggests gas densities that are sufficient for self-gravity to overcome the tidal shear of the 4$times10^6$ msol, black hole. Second, SED modeling of stellar sources indicate massive YSO candidates interior to the molecular ring, supporting in-situ star formation near Sgr A* and appear to show a distribution similar to that of the counter-rotating disks of $sim$100 OB stars orbiting Sgr A*. Some YSO candidates (e.g., IRS~5) have bow shock structures suggesting that they have have gaseous disks that are phototoevaporated and photoionized by the strong radiation field. Third, we detect clumps of SiO (2-1) and (5-4) line emission in the ring based on CARMA and SMA observations. The FWHM and luminosity of the SiO emission is consistent with shocked protostellar outflows. Fourth, two linear ionized features with an extent of $sim0.8$ pc show blue and redshifted velocities between $+50$ and $-40$ kms, suggesting protostellar jet driven outflows with mass loss rates of $sim5times10^{-5}$ solar mass yr$^{-1}$. Finally, we present the imprint of radio dark clouds at 44 GHz, representing a reservoir of molecular gas that feeds star formation activity close to Sgr A*.
We present 74 MHz radio continuum observations of the Galactic center region. These measurements show nonthermal radio emission arising from molecular clouds that is unaffected by free-free absorption along the line of sight. We focus on one cloud, G 0.13--0.13, representative of the population of molecular clouds that are spatially correlated with steep spectrum (alpha^{74MHz}_{327MHz}=1.3pm0.3) nonthermal emission from the Galactic center region. This cloud lies adjacent to the nonthermal radio filaments of the Arc near l~0.2^0 and is a strong source of 74 MHz continuum, SiO (2-1) and FeI Kalpha 6.4 keV line emission. This three-way correlation provides the most compelling evidence yet that relativistic electrons, here traced by 74 MHz emission, are physically associated with the G0.13--0.13 molecular cloud and that low energy cosmic ray electrons are responsible for the FeI Kalpha line emission. The high cosmic ray ionization rate ~10-13 s-1 H-1 is responsible for heating the molecular gas to high temperatures and allows the disturbed gas to maintain a high velocity dispersion. LVG modeling of multi-transition SiO observations of this cloud implies H2 densities ~104-5 cm-3 and high temperatures. The lower limit to the temperature of G0.13-0.13 is ~100K, whereas the upper limit is as high as 1000K. Lastly, we used a time-dependent chemical model in which cosmic rays drive the chemistry of the gas to investigate for molecular line diagnostics of cosmic ray heating. When the cloud reaches chemical equilibrium, the abundance ratios of HCN/HNC and N2H+/HCO+ are consistent with measured values. In addition, significant abundance of SiO is predicted in the cosmic ray dominated region of the Galactic center. We discuss different possibilities to account for the origin of widespread SiO emission detected from Galactic center molecular clouds.
ALMA observations of the Galactic center with spatial resolution $2.61times0.97$ resulted in the detection of 11 SiO (5-4) clumps of molecular gas within 0.6pc (15$$) of Sgr A*, interior to the 2-pc circumnuclear molecular ring. The three SiO (5-4) c lumps closest to Sgr A* show the largest central velocities, $sim150$ kms, and broadest asymmetric linewidths with full width zero intensity (FWZI) $sim110-147$ kms. The remaining clumps, distributed mainly to the NE of the ionized mini-spiral, have narrow FWZI ($sim18-56$ kms). Using CARMA SiO (2-1) data, LVG modeling of the the SiO line ratios for the broad velocity clumps, constrains the column density N(SiO) $sim10^{14}$ cm$^{-2}$, and the H$_2$ gas density n$_{rm H_2}=(3-9)times10^5$ cm$^{-3}$ for an assumed kinetic temperature 100-200K. The SiO clumps are interpreted as highly embedded protostellar outflows, signifying an early stage of massive star formation near Sgr A* in the last $10^4-10^5$ years. Support for this interpretation is provided by the SiO (5-4) line luminosities and velocity widths which lie in the range measured for protostellar outflows in star forming regions in the Galaxy. Furthermore, SED modeling of stellar sources shows two YSO candidates near SiO clumps, supporting in-situ star formation near Sgr A*. We discuss the nature of star formation where the gravitational potential of the black hole dominates. In particular, we suggest that external radiative pressure exerted on self-shielded molecular clouds enhances the gas density, before the gas cloud become gravitationally unstable near Sgr A*. Alternatively, collisions between clumps in the ring may trigger gravitational collapse.
We report the discovery of a widespread population of collisionally excited methanol J = 4_{-1} to 3$_0 E sources at 36.2 GHz from the inner 66x18 (160x43 pc) of the Galactic center. This spectral feature was imaged with a spectral resolution of ~16. 6 km/s taken from 41 channels of a VLA continuum survey of the Galactic center region. The revelation of 356 methanol sources, most of which are maser candidates, suggests a large abundance of methanol in the gas phase in the Galactic center region. There is also spatial and kinematic correlation between SiO (2--1) and CH3OH emission from four Galactic center clouds: the +50 and +20 km/s clouds and G0.13-0.13 and G0.25+0.01. The enhanced abundance of methanol is accounted for in terms of induced photodesorption by cosmic rays as they travel through a molecular core, collide, dissociate, ionize, and excite Lyman Werner transitions of H2. A time-dependent chemical model in which cosmic rays drive the chemistry of the gas predicts CH3OH abundance of 10^{-8} to 10^{-7} on a chemical time scale of 5x10^4 to 5x10^5 years. The average methanol abundance produced by the release of methanol from grain surfaces is consistent with the available data.
The compact radio source Sgr A* is coincident with a 4 million solar mass black hole at the dynamical center of the Galaxy and is surrounded by dense orbiting ionized and molecular gas. We present high resolution radio continuum images of the central 3 and report a faint continuous linear structure centered on Sgr A* with a PA~60 degrees. The extension of this feature appears to be terminated symmetrically by two linearly polarized structures at 8.4 GHz, ~75 from Sgr A*. A number of weak blobs of radio emission with X-ray counterparts are detected along the axis of the linear structure. The linear structure is best characterized by a mildly relativistic jet from Sgr A* with an outflow rate 10^-6 solar mass per year. The near and far-sides of the jet are interacting with orbiting ionized and molecular gas over the last 1-3 hundred years and are responsible for a 2 hole, the minicavity, characterized by disturbed kinematics, enhanced FeII/III line emission, and diffuse X-ray gas. The estimated kinetic luminosity of the outflow is ~1.2x10^{41} erg/s, so the interaction with the bar may be responsible for the Galactic center X-ray flash inferred to be responsible for much of the fluorescent Fe Kalpha line emission from the inner 100pc of the Galaxy.
The high energy activity in the inner few degrees of the Galactic center is traced by diffuse radio, X-ray and gamma-ray emission. The physical relationship between different components of diffuse gas emitting at multiple wavelengths is a focus of th is work. We first present radio continuum observations using Green Bank Telescope and model the nonthermal spectrum in terms of a broken power-law distribution of GeV electrons emitting synchrotron radiation. We show that the emission detected by Fermi is primarily due to nonthermal bremsstrahlung produced by the population of synchrotron emitting electrons in the GeV energy range interacting with neutral gas. The extrapolation of the electron population measured from radio data to low and high energies can also explain the origin of FeI 6.4 keV line and diffuse TeV emission, as observed with Suzaku, XMM-Newton, Chandra and the H.E.S.S. observatories. The inferred physical quantities from modeling multi-wavelength emission in the context of bremsstrahlung emission from the inner 300x120 parsecs of the Galactic center are constrained to have the cosmic ray ionization rate 1-10x10^{-15} s^-1, molecular gas heating rate elevating the gas temperature to 75-200K, fractional ionization of molecular gas 10^{-6} to 10^{-5}, large scale magnetic field 10-20 micro Gauss, the density of diffuse and dense molecular gas 100 and 10^3 cm^{-3} over 300pc and 50pc pathlengths, and the variability of FeI Kalpha 6.4 keV line emission on yearly time scales. Important implications of our study are that GeV electrons emitting in radio can explain the GeV gamma-rays detected by Fermi and that the cosmic ray irradiation model, like the model of the X-ray irradiation triggered by past activity of Sgr A*, can also explain the origin of the variable 6.4 keV emission from Galactic center molecular clouds.
The X-ray and near-IR emission from Sgr A* is dominated by flaring, while a quiescent component dominates the emission at radio and sub-mm wavelengths. The spectral energy distribution of the quiescent emission from Sgr A* peaks at sub-mm wavelengths and is modeled as synchrotron radiation from a thermal population of electrons in the accretion flow, with electron temperatures ranging up to $sim 5-20$,MeV. Here we investigate the mechanism by which X-ray flare emission is produced through the interaction of the quiescent and flaring components of Sgr A*. The X-ray flare emission has been interpreted as inverse Compton, self-synchrotron-Compton, or synchrotron emission. We present results of simultaneous X-ray and near-IR observations and show evidence that X-ray peak flare emission lags behind near-IR flare emission with a time delay ranging from a few to tens of minutes. Our Inverse Compton scattering modeling places constraints on the electron density and temperature distributions of the accretion flow and on the locations where flares are produced. In the context of this model, the strong X-ray counterparts to near-IR flares arising from the inner disk should show no significant time delay, whereas near-IR flares in the outer disk should show a broadened and delayed X-ray flare.
We report the detection of variable emission from Sgr A* in almost all wavelength bands (i.e. centimeter, millimeter, submillimeter, near-IR and X-rays) during a multi-wavelength observing campaign. Three new moderate flares are detected simultaneous ly in both near-IR and X-ray bands. The ratio of X-ray to near-IR flux in the flares is consistent with inverse Compton scattering of near-IR photons by submillimeter emitting relativistic particles which follow scaling relations obtained from size measurements of Sgr A*. We also find that the flare statistics in near-IR wavelengths is consistent with the probability of flare emission being inversely proportional to the flux. At millimeter wavelengths, the presence of flare emission at 43 GHz (7mm) using VLBA with milli-arcsecond spatial resolution indicates the first direct evidence that hourly time scale flares are localized within the inner 30$times$70 Schwarzschild radii of Sgr A*. We also show several cross correlation plots between near-IR, millimeter and submillimeter light curves that collectively demonstrate the presence of time delays between the peaks of emission up to three hours. The evidence for time delays at millimeter and submillimeter wavelengths are consistent with the source of emission being optically thick initially followed by a transition to an optically thin regime. In particular, there is an intriguing correlation between the optically thin near-IR and X-ray flare and optically thick radio flare at 43 GHz that occurred on 2007 April 4. This would be the first evidence of a radio flare emission at 43 GHz delayed with respect to the near-IR and X-ray flare emission.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا