ترغب بنشر مسار تعليمي؟ اضغط هنا

Graphene nanoribbons (GNRs) based T junctions were designed and studied in this paper. These junctions were made up of shoulders (zigzag GNRs) joined with stems (armchair GNRs). We demonstrated the intrinsic transport properties and effective boron ( or nitrogen) doping of the junctions by using first principles quantum transport simulation. Several interesting results were found: i) The I-V characteristics of the pure-carbon T junctions were shown to obey Ohm law and the electrical conductivity of the junction depends on the height of the stem sensitively. ii) boron (or nitrogen) doping on the stems doesnt change the Ohm law of the T junctions, but the result is opposite when doping process occurs at the shoulders. This feature could make such quasi-2D T junction a possible candidate for nanoscale junction devices in a 2D network of nanoelectronic devices in which conducting pathways can be controlled.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا