ترغب بنشر مسار تعليمي؟ اضغط هنا

The dynamic properties of the quiet Sun photosphere can be investigated by analyzing the pair dispersion of small-scale magnetic fields (i.e., magnetic elements). By using $25$ hr-long Hinode magnetograms at high spatial resolution ($0.3$), we trac ked $68,490$ magnetic element pairs within a supergranular cell near the disk center. The computed pair separation spectrum, calculated on the whole set of particle pairs independently of their initial separation, points out what is known as a super-diffusive regime with spectral index $gamma=1.55pm0.05$, in agreement with the most recent literature, but extended to unprecedented spatial and temporal scales (from granular to supergranular). Furthermore, for the first time, we investigated here the spectrum of the mean square displacement of pairs of magnetic elements, depending on their initial separation $r_0$. We found that there is a typical initial distance above (below) which the pair separation is faster (slower) than the average. A possible physical interpretation of such a typical spatial scale is also provided.
Small scale magnetic fields (magnetic elements) are ubiquitous in the solar photosphere. Their interaction can provide energy to the upper atmospheric layers, and contribute to heat the solar corona. In this work, the dynamic properties of magnetic e lements in the quiet Sun are investigated. The high number of magnetic elements detected in a supegranular cell allowed us to compute their displacement spectrum $langle(Delta r)^2rangleproptotau^gamma$ (being $gamma>0$, and $tau$ the time since the first detection), separating the contribution of the network (NW) and the internetwork (IN) regions. In particular, we found $gamma=1.27pm0.05$ and $gamma=1.08pm0.11$ in NW (at smaller and larger scales, respectively), and $gamma=1.44pm0.08$ in IN. These results are discussed in light of the literature on the topic, as well as the implications for the build up of the magnetic network.
The study of spatial and temporal scales on which small magnetic structures (magnetic elements) are organized in the quiet Sun may be approached by determining how they are transported on the solar photosphere by convective motions. The process invol ved is diffusion. Taking advantage of Hinode high spatial resolution magnetograms of a quiet Sun region at the disk center, we tracked 20145 magnetic elements. The large field of view (~50 Mm) and the long duration of the observations (over 25 hours without interruption at a cadence of 90 seconds) allowed us to investigate the turbulent flows at unprecedented large spatial and temporal scales. In the field of view, in fact, an entire supergranule is clearly recognizable. The magnetic elements displacement spectrum shows a double-regime behavior: superdiffusive (gamma=1.34 +/- 0.02) up to granular spatial scales (~1500 km), and slightly superdiffusive (gamma=1.20 +/- 0.05) up to supergranular scales.
70 - F. Giannattasio 2012
The velocity field in the lower solar atmosphere undergoes strong interactions with magnetic fields. Many authors have pointed out that power is reduced by a factor between two and three within magnetic regions, depending on frequency, depth, the rad ius and the magnetic strength of the flux tube. Many mechanisms have been proposed to explain the observations. In this work, SDO dopplergrams and magnetograms of 12 bipolar active regions ($beta$ARs) at a 45 second cadence, are used to investigate the relation between velocity fluctuations and magnetic fields. We show that there is an asymmetry within $beta$ARs, with the velocity oscillation amplitude being more suppressed in the leading polarities compared to the trailing polarities. Also, the strongest magnetic fields do not completely suppress the five-minute oscillation amplitude, neither in the spot innermost umbrae.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا