ﻻ يوجد ملخص باللغة العربية
The study of spatial and temporal scales on which small magnetic structures (magnetic elements) are organized in the quiet Sun may be approached by determining how they are transported on the solar photosphere by convective motions. The process involved is diffusion. Taking advantage of Hinode high spatial resolution magnetograms of a quiet Sun region at the disk center, we tracked 20145 magnetic elements. The large field of view (~50 Mm) and the long duration of the observations (over 25 hours without interruption at a cadence of 90 seconds) allowed us to investigate the turbulent flows at unprecedented large spatial and temporal scales. In the field of view, in fact, an entire supergranule is clearly recognizable. The magnetic elements displacement spectrum shows a double-regime behavior: superdiffusive (gamma=1.34 +/- 0.02) up to granular spatial scales (~1500 km), and slightly superdiffusive (gamma=1.20 +/- 0.05) up to supergranular scales.
Small scale magnetic fields (magnetic elements) are ubiquitous in the solar photosphere. Their interaction can provide energy to the upper atmospheric layers, and contribute to heat the solar corona. In this work, the dynamic properties of magnetic e
In a recent study, we took advantage of a highly tilted coronal neutral sheet to show that density structures, extending radially over several solar radii (Rs), are released in the forming slow solar wind approximately 4-5 Rs above the solar surface
The solar wind is highly structured in fast and slow flows. These two dynamical regimes remarkably differ not only for the average values of magnetic field and plasma parameters but also for the type of fluctuations they transport. Fast wind is chara
Dissipation of magnetohydrodynamic (MHD) wave energy has been proposed as a viable heating mechanism in the solar chromospheric plasma. Here, we use a simplified one-dimensional model of the chromosphere to theoretically investigate the physical proc
This paper presents a novel spatio-temporal LSTM (SPATIAL) architecture for time series forecasting applied to environmental datasets. The framework was evaluated across multiple sensors and for three different oceanic variables: current speed, tempe