ترغب بنشر مسار تعليمي؟ اضغط هنا

117 - R. A. Ortiz , H. Menke , F. Misjak 2021
The recent observation of superconductivity in infinite-layer Nd$_{1-x}$Sr$_x$NiO$_2$ thin films has attracted a lot of attention, since this compound is electronically and structurally analogous to the superconducting cuprates. Due to the challenges in the phase stabilization upon chemical doping with Sr, we synthesized artificial superlattices of LaNiO$_3$ embedded in insulating LaGaO$_3$, and used layer-selective topotactic reactions to reduce the nickelate layers to LaNiO$_{2}$. Hole doping is achieved via interfacial oxygen atoms and tuned via the layer thickness. We used electrical transport measurements, transmission electron microscopy, and x-ray spectroscopy together with ab initio calculations to track changes in the local nickel electronic configuration upon reduction and found that these changes are reversible. Our experimental and theoretical data indicate that the doped holes are trapped at the interfacial quadratic pyramidal Ni sites. Calculations for electron-doped cases predict a different behavior, with evenly distributed electrons among the layers, thus opening up interesting perspectives for interfacial doping of transition metal oxides.
Heteroepitaxy offers a new type of control mechanism for the crystal structure, the electronic correlations, and thus the functional properties of transition-metal oxides. Here, we combine electrical transport measurements, high-resolution scanning t ransmission electron microscopy (STEM), and density functional theory (DFT) to investigate the evolution of the metal-to-insulator transition (MIT) in NdNiO$_3$ films as a function of film thickness and NdGaO$_3$ substrate crystallographic orientation. We find that for two different substrate facets, orthorhombic (101) and (011), modifications of the NiO$_6$ octahedral network are key for tuning the transition temperature $T_{text{MIT}}$ over a wide temperature range. A comparison of films of identical thickness reveals that growth on [101]-oriented substrates generally results in a higher $T_{text{MIT}}$, which can be attributed to an enhanced bond-disproportionation as revealed by the DFT+$U$ calculations, and a tendency of [011]-oriented films to formation of structural defects and stabilization of non-equilibrium phases. Our results provide insights into the structure-property relationship of a correlated electron system and its evolution at microscopic length scales and give new perspectives for the epitaxial control of macroscopic phases in metal-oxide heterostructures.
Variations in growth conditions associated with different deposition techniques can greatly affect the phase stability and defect structure of complex oxide heterostructures. We synthesized superlattices of the paramagnetic metal LaNiO3 and the large band gap insulator LaAlO3 by atomic layer-by-layer molecular beam epitaxy (MBE) and pulsed laser deposition (PLD) and compared their crystallinity, microstructure as revealed by high-resolution transmission electron microscopy images and resistivity. The MBE samples show a higher density of stacking faults, but smoother interfaces and generally higher electrical conductivity. Our study identifies the opportunities and challenges of MBE and PLD growth and serves as a general guide for the choice of deposition technique for perovskite oxides.
A combined analysis of x-ray absorption and resonant reflectivity data was used to obtain the orbital polarization profiles of superlattices composed of four-unit-cell-thick layers of metallic LaNiO3 and layers of insulating RXO3 (R=La, Gd, Dy and X= Al, Ga, Sc), grown on substrates that impose either compressive or tensile strain. This superlattice geometry allowed us to partly separate the influence of epitaxial strain from interfacial effects controlled by the chemical composition of the insulating blocking layers. Our quantitative analysis reveal orbital polarizations up to 25%. We further show that strain is the most effective control parameter, whereas the influence of the chemical composition of the blocking layers is comparatively small.
We report on the observation of orbital excitations in YVO3 by means of resonant inelastic x-ray scattering (RIXS) at energies across the vanadium L3 and oxygen K absorption edges. Due to the excellent experimental resolution we are able to resolve t he intra-t2g excitations at 0.1-0.2 eV, 1.07 eV, and 1.28 eV, the lowest excitations from the t2g into the eg levels at 1.86 eV, and further excitations above 2.2 eV. For the intra-t2g excitations at 0.1-0.2 eV, the RIXS peaks show small shifts of the order of 10-40 meV as a function of temperature and of about 13-20 meV as a function of the transferred momentum q||a. We argue that the latter reflects a finite dispersion of the orbital excitations. For incident energies tuned to the oxygen K edge, RIXS is more sensitive to intersite excitations. We observe excitations across the Mott-Hubbard gap and find an additional feature at 0.4 eV which we attribute to two-orbiton scattering, i.e., an exchange of orbitals between adjacent sites. Altogether, these results indicate that both superexchange interactions and the coupling to the lattice are important for a quantitative understanding of the orbital excitations in YVO3.
We have used resonant x-ray diffraction to develop a detailed description of antiferromagnetic ordering in epitaxial superlattices based on two-unit-cell thick layers of the strongly correlated metal LaNiO3. We also report reference experiments on th in films of PrNiO3 and NdNiO3. The resulting data indicate a spiral state whose polarization plane can be controlled by adjusting the Ni d-orbital occupation via two independent mechanisms: epitaxial strain and quantum confinement of the valence electrons. The data are discussed in the light of recent theoretical predictions.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا