ترغب بنشر مسار تعليمي؟ اضغط هنا

Electrical resistivity, specific heat and NMR measurements classify non-centrosymmetric $rm Mo_3Al_2C$ ($beta$-Mn type, space group $P4_132$) as a strong-coupled superconductor with $T_c = 9$~K deviating notably from BCS-like behaviour. The absence o f a Hebbel-Slichter peak, a power law behaviour of the spin-lattice relaxation rate (from $^{27}$Al NMR), a $T^3$ temperature dependence of the specific heat and a pressure enhanced $T_c$ suggest unconventional superconductivity with a nodal structure of the superconducting gap. Relativistic DFT calculations reveal a splitting of degenerate electronic bands due to the asymmetric spin-orbit coupling, favouring a mix of spin-singlet and spin triplet components in the superconducting condensate, in absence of strong correlations among electrons.
Combining experiments and ab initio models we report on $rm SrPt_4Ge_{12}$ and $rm BaPt_4Ge_{12}$ as members of a novel class of superconducting skutterudites, where Sr or Ba atoms stabilize a framework entirely formed by Ge-atoms. Below $T_c=5.35$ K , and 5.10 K for $rm BaPt_4Ge_{12}$ and $rm SrPt_4Ge_{12}$, respectively, electron-phonon coupled superconductivity emerges, ascribed to intrinsic features of the Pt-Ge framework, where Ge-$p$ states dominate the electronic structure at the Fermi energy.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا