ترغب بنشر مسار تعليمي؟ اضغط هنا

Unconventional superconductivity in weakly correlated, non-centrosymmetric $rm{Mo_3Al_2C}$

140   0   0.0 ( 0 )
 نشر من قبل Ernst Bauer
 تاريخ النشر 2010
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Electrical resistivity, specific heat and NMR measurements classify non-centrosymmetric $rm Mo_3Al_2C$ ($beta$-Mn type, space group $P4_132$) as a strong-coupled superconductor with $T_c = 9$~K deviating notably from BCS-like behaviour. The absence of a Hebbel-Slichter peak, a power law behaviour of the spin-lattice relaxation rate (from $^{27}$Al NMR), a $T^3$ temperature dependence of the specific heat and a pressure enhanced $T_c$ suggest unconventional superconductivity with a nodal structure of the superconducting gap. Relativistic DFT calculations reveal a splitting of degenerate electronic bands due to the asymmetric spin-orbit coupling, favouring a mix of spin-singlet and spin triplet components in the superconducting condensate, in absence of strong correlations among electrons.



قيم البحث

اقرأ أيضاً

Two dimensional SrTiO3-based interfaces stand out among non-centrosymmetric superconductors due to their intricate interplay of gate tunable Rashba spin-orbit coupling and multi-orbital electronic occupations, whose combination theoretically prefigur es various forms of non-standard superconductivity. However, a convincing demonstration by phase sensitive measurements has been elusive so far. Here, by employing superconducting transport measurements in nano-devices we present clear-cut experimental evidences of unconventional superconductivity in the LaAlO3/SrTiO3 interface. The central observations are the substantial anomalous enhancement of the critical current by small magnetic fields applied perpendicularly to the plane of electron motion, and the asymmetric response with respect to the magnetic field direction. These features have a unique trend in intensity and sign upon electrostatic gating that, together with their dependence on temperature and nanowire dimensions, cannot be accommodated within a scenario of canonical spin-singlet superconductivity. We theoretically demonstrate that the hall-marks of the experimental observations unambiguously indicate a coexistence of Josephson channels with sign difference and intrinsic phase shift. The character of these findings establishes the occurrence of independent components of unconventional pairing in the superconducting state due to inversion symmetry breaking. The outcomes open new venues for the investigation of multi-orbital non-centrosymmetric superconductivity and Josephson-based devices for quantum technologies.
249 - E. Bauer , G. Hilscher , H. Michor 2004
$rm CePt_3Si$ is a novel ternary compound exhibiting antiferromagnetic order at $T_N approx 2.2$ K and superconductivity (SC) at $T_c approx 0.75$ K. Large values of $H_{c2} approx -8.5$ T/K and $H_{c2}(0) approx 5$ T indicate Cooper pairs formed out of heavy quasiparticles. The mass enhancement originates from Kondo interaction with a characteristic temperature $T_K approx 8$ K. NMR and $mu$SR measurements evidence coexistence of SC and long range magnetic order on a microscopic scale. Moreover, $rm CePt_3Si$ is the first heavy fermion SC without an inversion symmetry. This gives rise to a novel type of the NMR relaxation rate $1/T_1$ which is very unique and never reported before for other heavy fermion superconductors. Studies of Si/Ge substitution allow us to establish a phase diagram.
We report a study of the normal- and superconducting-state electronic properties of the centrosymmetric compound SrPt3P via 31P nuclear-magnetic-resonance (NMR) and magnetometry investigations. Essential features such as a sharp drop of the Knight sh ift at T < Tc and an exponential decrease of the NMR spin-lattice relaxation ratio 1/(T1T) below Tc are consistent with an s-wave electron pairing in SrPt3P, although a direct confirmation in the form of a Hebel-Slichter-type peak is lacking. Normal-state NMR data at T < 50 K indicate conventional features of the conduction electrons, typical of simple metals such as lithium or silver. Our data are finally compared with available NMR results for the noncentrosymmetric superconductors LaPt$_3$Si and CePt$_3$Si, which adopt similar crystal structures.
We report the discovery of superconductivity in pressurized CeRhGe3, until now the only remaining non-superconducting member of the isostructural family of non-centrosymmetric heavy-fermion compounds CeTX3 (T = Co, Rh, Ir and X = Si, Ge). Superconduc tivity appears in CeRhGe3 at a pressure of 19.6 GPa and the transition temperature Tc reaches a maximum value of 1.3 K at 21.5 GPa. This finding provides an opportunity to establish systematic correlations between superconductivity and materials properties within this family. Though ambient-pressure unit-cell volumes and critical pressures for superconductivity vary substantially across the series, all family members reach a maximum Tcmax at a common critical cell volume Vcrit, and Tcmax at Vcrit increases with increasing spin-orbit coupling strength of the d-electrons. These correlations show that substantial Kondo hybridization and spin-orbit coupling favor superconductivity in this family, the latter reflecting the role of broken centro-symmetry.
We present a novel route for attaining unconventional superconductivity (SC) in a strongly correlated system without doping. In a simple model of a correlated band insulator (BI) at half-filling we demonstrate, based on a generalization of the projec ted wavefunctions method, that SC emerges when e-e interactions and the bare band-gap are both much larger than the kinetic energy, provided the system has sufficient frustration against the magnetic order. As the interactions are tuned, SC appears sandwiched between the correlated BI followed by a paramagnetic metal on one side, and a ferrimagnetic metal, antiferromagnetic (AF) half-metal, and AF Mott insulator phases on the other side.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا