ترغب بنشر مسار تعليمي؟ اضغط هنا

We present a joint theory-experiment study on ultrafast photoluminescence from photoexcited graphene. Based on a microscopic theory, we reveal two distinct mechanisms behind the occurring photoluminescence: Besides the well-known incoherent contribut ion driven by non-equilibrium carrier occupations, we found a coherent part that spectrally shifts with the excitation energy. In our experiments, we demonstrate for the first time the predicted appearance and spectral shift of the coherent photoluminescence.
In contrast to conventional structures, efficient non-radiative carrier recombination counteracts the appearance of optical gain in graphene. Based on a microscopic and fully quantum-mechanical study of the coupled carrier, phonon, and photon dynamic s in graphene, we present a strategy to obtain a long-lived gain: Integrating graphene into a photonic crystal nanocavity and applying a high-dielectric substrate gives rise to pronounced coherent light emission suggesting the design of graphene-based laser devices covering a broad spectral range.
We present a microscopic explanation of the controversially discussed transient negative differential transmission observed in degenerate optical pump-probe measurements in graphene. Our approach is based on the density matrix formalism allowing a ti me- and momentum-resolved study of carrier-light, carrier-carrier, and carrier-phonon interaction on microscopic footing. We show that phonon-assisted optical intraband transitions give rise to transient absorption in the optically excited hot carrier system counteracting pure absorption bleaching of interband transitions. While interband transition bleaching is relevant in the first hundreds of fs after the excitation, intraband absorption sets in at later times. In particular, in the low excitation regime, these intraband absorption processes prevail over the absorption bleaching resulting in a zero-crossing of the differential transmission. Our findings are in good agreement with recent experimental pump-probe studies.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا