ترغب بنشر مسار تعليمي؟ اضغط هنا

Graphene as Gain Medium for Broadband Lasers

236   0   0.0 ( 0 )
 نشر من قبل Ermin Malic
 تاريخ النشر 2014
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

In contrast to conventional structures, efficient non-radiative carrier recombination counteracts the appearance of optical gain in graphene. Based on a microscopic and fully quantum-mechanical study of the coupled carrier, phonon, and photon dynamics in graphene, we present a strategy to obtain a long-lived gain: Integrating graphene into a photonic crystal nanocavity and applying a high-dielectric substrate gives rise to pronounced coherent light emission suggesting the design of graphene-based laser devices covering a broad spectral range.



قيم البحث

اقرأ أيضاً

This paper discusses the temperature-dependent properties of (GaIn)As/Ga(AsSb)/(GaIn)As W-quantum well heterostructures for laser applications based on theoretical modeling as well as experimental findings. A microscopic theory is applied to discuss band bending effects giving rise to the characteristic blue shift with increasing charge carrier density observed in type-II heterostructures. Furthermore, gain spectra for a W-quantum well heterostructure are calculated up to high charge carrier densities. At these high charge carrier densities, the interplay between multiple type-II transitions results in broad and flat gain spectra with a spectral width of approximately 160 nm. Furthermore, the temperature-dependent properties of broad-area edge-emitting lasers are analyzed using electroluminescence as well as laser characteristic measurements. A first indication for the theoretically predicted broad gain spectra is presented and the interplay between the temperature-dependent red shift and the charge carrier density-dependent blue shift is discussed. A combination of these effects results in a significant reduction of the temperature-induced red shift of the emission wavelengths and even negative shift rates of (-0.10 plusminus 0.04) nm/K are achieved.
383 - H. A. M. Leymann 2013
We investigate correlations between orthogonally polarized cavity modes of a bimodal micropillar laser with a single layer of self-assembled quantum dots in the active region. While one emission mode of the microlaser demonstrates a characteristic s- shaped input-output curve, the output intensity of the second mode saturates and even decreases with increasing injection current above threshold. Measuring the photon auto-correlation function g^{(2)}(tau) of the light emission confirms the onset of lasing in the first mode with g^{(2)}(0) approaching unity above threshold. In contrast, strong photon bunching associated with super-thermal values of g^{(2)}(0) is detected for the other mode for currents above threshold. This behavior is attributed to gain competition of the two modes induced by the common gain material, which is confirmed by photon crosscorrelation measurements revealing a clear anti-correlation between emission events of the two modes. The experimental studies are in excellent qualitative agreement with theoretical studies based on a microscopic semiconductor theory, which we extend to the case of two modes interacting with the common gain medium. Moreover, we treat the problem by an extended birth-death model for two interacting modes, which reveals, that the photon probability distribution of each mode has a double peak structure, indicating switching behavior of the modes for the pump rates around threshold.
Although nanolasers typically have low Q-factors and high lasing thresholds, they have been successfully implemented with various gain media. Intuitively, it seems that an increase in the gain coefficient would improve the characteristics of nanolase rs. For a plasmonic nanolaser, in particular, a distributed-feed-back (DFB) laser, we propose a self-consistent model that takes into account both spontaneous emission and the multimode character of laser generation to show that for a given pumping strength, the gain coefficient has an optimal value at which the radiation intensity is at a maximum and the radiation linewidth is at a minimum.
We review principles and trends in the use of semiconductor nanowires (NWs) as gain media for stimulated emission and lasing. Semiconductor nanowires have recently been widely studied for use in integrated optoelectronic devices, such as LEDs, solar cells, and transistors. Intensive research has also been conducted on the use of nanowires for sub-wavelength laser systems that take advantage of their quasi-one-dimensional nature, flexibility in material choice and combination, and intrinsic optoelectronic properties. First, we provide an overview on using quasi-one-dimensional nanowire systems to realize sub-wavelength lasers with efficient, directional, and low-threshold emission. We then describe the state-of-the-art for nanowire lasers in terms of materials, geometry, and wavelength tunability. Next, we present the basics of lasing in semiconductor nanowires, define the key parameters for stimulated emission, and introduce the properties of nanowires. We then review advanced nanowire laser designs from the literature. Finally, we present interesting perspectives for low-threshold nanoscale light sources and optical interconnects. We intend to illustrate the potential of nanolasers in many applications, such as nanophotonic devices that integrate electronics and photonics for next-generation optoelectronic devices. For instance, these building blocks for nanoscale photonics can be used for data storage and biomedical applications when coupled to on-chip characterization tools. These nanoscale monochromatic laser light sources promise breakthroughs in nanophotonics, as they can operate at room temperature, potentially be electrically driven, and yield a better understanding of intrinsic nanomaterial properties and surface state effects in low-dimensional semiconductor systems.
Strongly driving a two-level quantum system with light leads to a ladder of Floquet states separated by the photon energy. Nanoscale quantum devices allow the interplay of confined electrons, phonons, and photons to be studied under strong driving co nditions. Here we show that a single electron in a periodically driven DQD functions as a Floquet gain medium, where population imbalances in the DQD Floquet quasi-energy levels lead to an intricate pattern of gain and loss features in the cavity response. We further measure a large intra-cavity photon number n_c in the absence of a cavity drive field, due to equilibration in the Floquet picture. Our device operates in the absence of a dc current -- one and the same electron is repeatedly driven to the excited state to generate population inversion. These results pave the way to future studies of non-classical light and thermalization of driven quantum systems.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا