ترغب بنشر مسار تعليمي؟ اضغط هنا

The SPI spectrometer aboard the INTEGRAL mission observes regularly the Crab Nebula since 2003. We report on observations distributed over 5.5 years and investigate the variability of the intensity and spectral shape of this remarkable source in the hard X-rays domain up to a few MeV. While single power law models give a good description in the X-ray domain (mean photon index ~ 2.05) and MeV domain (photon index ~ 2.23), crucial information are contained in the evolution of the slope with energy between these two values. This study has been carried out trough individual observations and long duration (~ 400 ks) averaged spectra. The stability of the emission is remarkable and excludes a single power law model. The slopes measured below and above 100 keV agree perfectly with the last values reported in the X-ray and MeV regions respectively, but without indication of a localized break point. This suggests a gradual softening in the emission around 100 keV and thus a continuous evolution rather than an actual change in the mechanism parameters. In the MeV region, no significant deviation from the proposed power law model is visible up to 5-6 MeV. Finally, we take advantage of the spectroscopic capability of the instrument to seek for previously reported spectral features in the covered energy range with negative results for any significant cyclotron or annihilation emission on 400 ks timescales. Beyond the scientific results, the performance and reliability of the SPI instrument is explicitly demonstrated, with some details about the most appropriate analysis method.
129 - L. Bouchet 2008
The microquasar 1E 1740.7-2942 is observed with Integral since Spring 2003. Here, we report on the source high energy behaviour by using the first three years of data collected with SPI and IBIS telescopes, taking advantage of the instruments complem entarity. Light curves analysis showed two main states for 1E 1740.7-2942: the canonical low/hard state of black-hole candidates and a ``dim state, characterised by a ~ 20 times fainter emission, detected only below 50 keV and when summing more than 1Ms of data. For the first time the continuum of the low/hard state has been measured up to ~ 600 keV with a spectrum that is well represented by a thermal Comptonization plus an additional component necessary to fit the data above 200 keV. This high energy component could be related to non-thermal processes as already observed in other black-hole candidates. Alternatively, we show that a model composed by two thermal Comptonizations provides an equally representative description of the data: the temperature of the first population of electrons results as (kTe)_1 ~ 30 keV while the second, (kTe)_2, is fixed at 100 keV. Finally, searching for 511 keV line showed no feature, either narrow or broad, transient or persistent.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا