ﻻ يوجد ملخص باللغة العربية
The microquasar 1E 1740.7-2942 is observed with Integral since Spring 2003. Here, we report on the source high energy behaviour by using the first three years of data collected with SPI and IBIS telescopes, taking advantage of the instruments complementarity. Light curves analysis showed two main states for 1E 1740.7-2942: the canonical low/hard state of black-hole candidates and a ``dim state, characterised by a ~ 20 times fainter emission, detected only below 50 keV and when summing more than 1Ms of data. For the first time the continuum of the low/hard state has been measured up to ~ 600 keV with a spectrum that is well represented by a thermal Comptonization plus an additional component necessary to fit the data above 200 keV. This high energy component could be related to non-thermal processes as already observed in other black-hole candidates. Alternatively, we show that a model composed by two thermal Comptonizations provides an equally representative description of the data: the temperature of the first population of electrons results as (kTe)_1 ~ 30 keV while the second, (kTe)_2, is fixed at 100 keV. Finally, searching for 511 keV line showed no feature, either narrow or broad, transient or persistent.
The brightest persistent Galactic black hole candidate close to the Galactic Centre, 1E 1740.7-2942, has long been observed with INTEGRAL. In this paper, we report on the long-term hard X-ray monitoring obtained during the first year of observations
We present results of the monitoring of the black hole candidate 1E 1740.7-2942 with INTEGRAL, in combination with simultaneous observations by RXTE. We concentrate on broad-band spectra from INTEGRAL/IBIS and RXTE/PCA instruments. During our observa
The microquasar 1E 1740.7-2942 is one of the most appealing source of the Galactic Centre region. The high energy feature detected once by SIGMA has been searched in the last years by INTEGRAL, but never confirmed. Classified as a persistent source,
Studies of the long-term spectral variations have been used to constrain the emission processes of black hole candidates. However, a common scenario which is able to explain the emission from soft to hard X-rays has been proposed only recently. Here,
The black hole system 1E${thinspace}$1740.7$-$2942 is usually the brightest hard X-ray source (above 20 keV) near the Galactic Center, but presents some epochs of low emission (below the INTEGRAL detection limit, for example). In this work, we presen