ترغب بنشر مسار تعليمي؟ اضغط هنا

The s-channel annihilation of proton and antiproton into a neutral pion and a real or virtual photon followed by lepton pair emission is studied. Such mechanism is expected to play a role at moderate values of the total energy $sqrt{s}$, when the pio n is emitted around $90^{circ}$ in the center of mass. A fair comparison with the existing data is obtained taking into account scattering and annihilation channels. The cross section is calculated and numerical results are given in the kinematical range accessible in the PANDA experiment at FAIR.
The possibility of measuring the proton electromagnetic form factors in the time-like region at FAIR with the PANDA detector is discussed. Detailed simulations on signal efficiency for the annihilation of $bar p +p $ into a lepton pair as well as for the most important background channels have been performed. It is shown that precision measurements of the differential cross section of the reaction $bar p +p to e^++ e^-$ can be obtained in a wide angular and kinematical range. The individual determination of the moduli of the electric and magnetic proton form factors will be possible up to a value of momentum transfer squared of $q^2simeq 14$ (GeV/c)$^2$. The total $bar p +pto e^++e^-$ cross section will be measured up to $q^2simeq 28$ (GeV/c)$^2$. The results obtained from simulated events are compared to the existing data. Sensitivity to the two photons exchange mechanism is also investigated.
We look for asymmetries in the angular distributions of events from recent data on $e^+ +e^-to p +bar p +gamma$ from BABAR collaboration. From first principles, as the C-invariance of the electromagnetic interaction and the crossing symmetry, the pre sence of two-photon exchange would create a forward backward asymmetry in the data. The analysis of the available data shows no asymmetry, within an error of 2%. This result is consistent with a structureless model for the proton, based on a calculation of $e^+ +e^-to mu^+ + mu^- +gamma$ with a proper replacement of the muon mass. As no systematic deviations are seen, we can conclude that these data do not give any hint of the presence of the two photon contribution, in all the considered kinematical range.
In frame of a phenomenological approach based on Compton-like Feynman amplitudes, we study multi-pion production in antiproton nucleon collisions. The main interest of this reaction is related to the possibility to study the properties of the presuma ble $bar N N$ atom and of its resonances. For the case of formation of a scalar or pseudoscalar resonant state, with $I^G(J^{P})=1^-(0^{pm}),~0^+(0^-)$ numerical results are obtained. The differential cross section in an experimental set-up where the pions invariant mass is measured, is given with explicit dependence on the lepton pair and pions invariant mass.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا