ترغب بنشر مسار تعليمي؟ اضغط هنا

Breaking space-time symmetries in two-dimensional crystals (2D) can dramatically influence their macroscopic electronic properties. Monolayer transition-metal dichalcogenides (TMDs) are prime examples where the intrinsically broken crystal inversion symmetry permits the generation of valley-selective electron populations, even though the two valleys are energetically degenerate, locked by time-reversal symmetry. Lifting the valley degeneracy in these materials is of great interest because it would allow for valley-specific band engineering and offer additional control in valleytronic applications. While applying a magnetic field should in principle accomplish this task, experiments to date have observed no valley-selective energy level shifts in fields accessible in the laboratory. Here we show the first direct evidence of lifted valley degeneracy in the monolayer TMD WS2. By applying intense circularly polarized light, which breaks time-reversal symmetry, we demonstrate that the exciton level in each valley can be selectively tuned by as much as 18 meV via the optical Stark effect. These results offer a novel way to control valley degree of freedom, and may provide a means to realize new valley-selective Floquet topological phases in 2D TMDs.
Interactions between two excitons can result in the formation of bound quasiparticles, known as biexcitons. Their properties are determined by the constituent excitons, with orbital and spin states resembling those of atoms. Monolayer transition meta l dichalcogenides (TMDs) present a unique system where excitons acquire a new degree of freedom, the valley pseudospin, from which a novel intervalley biexciton can be created. These biexcitons comprise two excitons from different valleys, which are distinct from biexcitons in conventional semiconductors and have no direct analogue in atomic and molecular systems. However, their valley properties are not accessible to traditional transport and optical measurements. Here, we report the observation of intervalley biexcitons in the monolayer TMD MoS2 using ultrafast pump-probe spectroscopy. By applying broadband probe pulses with different helicities, we identify two species of intervalley biexcitons with large binding energies of 60 meV and 40 meV. In addition, we also reveal effects beyond biexcitonic pairwise interactions in which the exciton energy redshifts at increasing exciton densities, indicating the presence of many-body interactions among them.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا