ترغب بنشر مسار تعليمي؟ اضغط هنا

112 - Duncan Galloway 2013
Rapidly-rotating neutron stars are the only candidates for persistent high-frequency gravitational wave emission, for which a targeted search can be performed based on the spin period measured from electromagnetic (e.g. radio and X-ray) observations. The principal factor determining the sensitivity of such searches is the measurement precision of the physical parameters of the system. Neutron stars in X-ray binaries present additional computational demands for searches due to the uncertainty in the binary parameters. We present the results of a pilot study with the goal of improving the measurement precision of binary orbital parameters for candidate gravitational wave sources. We observed the optical counterpart of Sco X-1 in 2011 June with the William Herschel Telescope, and also made use of Very Large Telescope observations in 2011, to provide an additional epoch of radial-velocity measurements to earlier measurements in 1999. From a circular orbit fit to the combined dataset, we obtained an improvement of a factor of two in the orbital period precision, and a factor of 2.5 in the epoch of inferior conjunction $T_0$. While the new orbital period is consistent with the previous value of Gottllieb et al. (1975), the new $T_0$ (and the amplitude of variation of the Bowen line velocities) exhibited a significant shift, which we attribute to variations in the emission geometry with epoch. We propagate the uncertainties on these parameters through to the expected Advanced LIGO & VIRGO detector network observation epochs, and quantify the improvement obtained with additional optical observations.
The radius of neutron stars can in principle be measured via the normalisation of a blackbody fitted to the X-ray spectrum during thermonuclear (type-I) X-ray bursts, although few previous studies have addressed the reliability of such measurements. Here we examine the apparent radius in a homogeneous sample of long, mixed H/He bursts from the low-mass X-ray binaries GS 1826-24 and KS 1731-26. The measured blackbody normalisation (proportional to the emitting area) in these bursts is constant over a period of up to 60s in the burst tail, even though the flux (blackbody temperature) decreased by a factor of 60-75% (30-40%). The typical rms variation in the mean normalisation from burst to burst was 3-5%, although a variation of 17% was found between bursts observed from GS 1826-24 in two epochs. A comparison of the time-resolved spectroscopic measurements during bursts from the two epochs shows that the normalisation evolves consistently through the burst rise and peak, but subsequently increases further in the earlier epoch bursts. The elevated normalisation values may arise from a change in the anisotropy of the burst emission, or alternatively variations in the spectral correction factor, f_c, of order 10%. Since burst samples observed from systems other than GS 1826-24 are more heterogeneous, we expect that systematic uncertainties of at least 10% are likely to apply generally to measurements of neutron-star radii, unless the effects described here can be corrected for.
Recent theoretical and observational studies have shown that ashes from thermonuclear burning may be ejected during radius-expansion bursts, giving rise to photoionisation edges in the X-ray spectra. We report a search for such features in Chandra sp ectra observed from the low-mass X-ray binary 4U 1728-34. We analysed the spectra from four radius-expansion bursts detected in 2006 July, and two in 2002 March, but found no evidence for discrete features. We estimate upper limits for the equivalent widths of edges of a few hundred eV, which for the moderate temperatures observed during the bursts, are comparable with the predictions. During the 2006 July observation 4U 1728-34 exhibited weak, unusually frequent bursts (separated by <2 hr in some cases), with profiles and alpha-values characteristic of hydrogen-poor fuel. Recurrence times as short as those measured are insufficient to exhaust the accreted hydrogen at solar composition, suggesting that the source accretes hydrogen deficient fuel, for example from an evolved donor. The detection for the first time of a 10.77 min periodic signal in the persistent intensity, perhaps arising from orbital modulation, supports this explanation, and suggests that this system is an ultracompact binary similar to 4U 1820-30.
We report the detection of pulsations at 552 Hz in the rising phase of two type-I (thermonuclear) X-ray bursts observed from the accreting neutron star EXO 0748-676 in 2007 January and December, by the Rossi X-ray Timing Explorer. The fractional ampl itude was 15% (rms). The dynamic power density spectrum for each burst revealed an increase in frequency of approx. 1-2 Hz while the oscillation was present. The frequency drift, the high significance of the detections and the almost identical signal frequencies measured in two bursts separated by 11 months, confirms this signal as a burst oscillation similar to those found in 13 other sources to date. We thus conclude that the spin frequency in EXO 0748-676 is within a few Hz of 552 Hz, rather than 45 Hz as was suggested from an earlier signal detection by Villarreal & Strohmayer (2004). Consequently, Doppler broadening must significantly affect spectral features arising from the neutron star surface, so that the narrow absorption features previously reported from an XMM-Newton spectrum could not have arisen there. The origin of both the previously reported 45 Hz oscillation and the X-ray absorption lines is now uncertain.
We present ongoing Rossi X-ray Timing Explorer (RXTE) monitoring observations of the 377.3 Hz accretion-powered pulsar, HETE J1900.1-2455 Activity continues in this system more than 3 years after discovery, at a mean luminosity of 4.4e36 erg/s (for d =5 kpc), although pulsations were present only within the first 70 days. X-ray variability has increased each year, notably with a brief interval of nondetection in 2007, during which the luminosity dropped to below 1e-3 of the mean level. A deep search of data from the intervals of nondetection in 2005 revealed evidence for extremely weak pulsations at an amplitude of 0.29% rms, a factor of ten less than the largest amplitude seen early in the outburst. X-ray burst activity continued through 2008, with bursts typically featuring strong radius expansion. Spectral analysis of the most intense burst detected by RXTE early in the outburst revealed unusual variations in the inferred photospheric radius, as well as significant deviations from a blackbody. We obtained much better fits instead with a comptonisation model.
Eddington-limited X-ray bursts from neutron stars can be used in conjunction with other spectroscopic observations to measure neutron star masses, radii, and distances. In order to quantify some of the uncertainties in the determination of the Edding ton limit, we analysed a large sample of photospheric radius-expansion thermonuclear bursts observed with the Rossi X-ray Timing Explorer. We identified the instant at which the expanded photosphere touches down back onto the surface of the neutron star and compared the corresponding touchdown flux to the peak flux of each burst. We found that for the majority of sources, the ratio of these fluxes is smaller than 1.6, which is the maximum value expected from the changing gravitational redshift during the radius expansion episodes (for a 2M_sun neutron star). The only sources for which this ratio is larger than 1.6 are high inclination sources that include dippers and Cyg X-2. We discuss two possible geometric interpretations of this effect and show that the inferred masses and radii of neutron stars are not affected by this bias. On the other hand, systematic uncertainties as large as ~50% may be introduced to the distance determination.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا