ﻻ يوجد ملخص باللغة العربية
Eddington-limited X-ray bursts from neutron stars can be used in conjunction with other spectroscopic observations to measure neutron star masses, radii, and distances. In order to quantify some of the uncertainties in the determination of the Eddington limit, we analysed a large sample of photospheric radius-expansion thermonuclear bursts observed with the Rossi X-ray Timing Explorer. We identified the instant at which the expanded photosphere touches down back onto the surface of the neutron star and compared the corresponding touchdown flux to the peak flux of each burst. We found that for the majority of sources, the ratio of these fluxes is smaller than 1.6, which is the maximum value expected from the changing gravitational redshift during the radius expansion episodes (for a 2M_sun neutron star). The only sources for which this ratio is larger than 1.6 are high inclination sources that include dippers and Cyg X-2. We discuss two possible geometric interpretations of this effect and show that the inferred masses and radii of neutron stars are not affected by this bias. On the other hand, systematic uncertainties as large as ~50% may be introduced to the distance determination.
We analyzed 123 thermonuclear (type-I) X-ray bursts observed by the Rossi X-ray Timing Explorer from the low-mass X-ray binary 4U 1636-536. All but two of the 40 radius-exansion bursts in this sample reached peak fluxes which were normally distribute
We investigate the limitations of thermonuclear X-ray bursts as a distance indicator for the weakly-magnetized accreting neutron star 4U 1728-34. We measured the unabsorbed peak flux of 81 bursts in public data from the Rossi X-Ray Timing Explorer (R
Observations of thermonuclear X-ray bursts from accreting neutron stars (NSs) in low-mass X-ray binary systems can be used to constrain NS masses and radii. Most previous work of this type has set these constraints using Planck function fits as a pro
The radius of neutron stars can in principle be measured via the normalisation of a blackbody fitted to the X-ray spectrum during thermonuclear (type-I) X-ray bursts, although few previous studies have addressed the reliability of such measurements.
X-ray spectral analysis of quiescent low-mass X-ray binaries (LMXBs) has been one of the most common tools to measure the radius of neutron stars (NSs) for over a decade. So far, this method has been mainly applied to NSs in globular clusters, primar