ترغب بنشر مسار تعليمي؟ اضغط هنا

A significant amount of research has been conducted in order to make home appliances more efficient in terms of energy usage. Various techniques have been designed and implemented in order to control the power demand and supply. This paper encompasse s reviews of different research works on a wide range of energy management techniques for smart homes aimed at reducing energy consumption and minimizing energy wastage. The idea of smart home is elaborated followed by a review of existing energy management methods.
The advent of various wireless technologies have revolutionized the communication infrastructure and consequently changed the entire world into a global village. Use of wireless technology has also been made for transmission of electric power wireles sly. It increases the portability of power systems and integrates the communication technologies and electric power to the same platform. This paper presents a comprehensive review and detailed analysis of various techniques used for wireless power transmission. Feasibility, implementations, operations, results and comparison among different methods have also been covered in order to identify the favorable and economical method for low power and small distance applications.
94 - N. Javaid , A. BiBi , A. Javaid 2013
In this paper, we propose a new Quality Link Metric (QLM), ``Inverse Expected Transmission Count (InvETX) in Optimized Link State Routing (OLSR) protocol. Then we compare performance of three existing QLMs which are based on loss probability measurem ents; Expected Transmission Count (ETX), Minimum Delay (MD), Minimum Loss (ML) in Static Wireless Multi-hop Networks (SWMhNs). A novel contribution of this paper is enhancement in conventional OLSR to achieve high efficiency in terms of optimized routing load and routing latency. For this purpose, first we present a mathematical framework, and then to validate this frame work, we select three performance parameters to simulate default and enhanc
263 - D. Mahmood , N. Javaid , U. Qasim 2013
To ensure seamless communication in wireless multi-hop networks, certain classes of routing protocols are defined. This vary paper, is based upon proactive routing protocols for Wireless multihop networks. Initially, we discuss Destination Sequence D istance Vector (DSDV), Fish-eye State Routing (FSR) and Optimized Link State Routing (OLSR), precisely followed by mathematical frame work of control overhead regarding proactive natured routing protocols. Finally, extensive simulations are done using NS 2 respecting above mentioned routing protocols covering mobility and scalability issues. Said protocols are compared under mobile and dense environments to conclude our performance analysis.
Reactive routing protocols are gaining popularity due to their event driven nature day by day. In this vary paper, reactive routing is studied precisely. Route request, route reply and route maintenance phases are modeled with respect to control over head. Control overhead varies with respect to change in various parameters. Our model calculates these variations as well. Besides modeling, we chose three most favored reactive routing protocols as Ad-Hoc on Demand Distance Vector (AODV), Dynamic Source Routing (DSR) and Dynamic MANET on Demand (DYMO) for our experiments. We simulated these protocols using ns-2 for a detailed comparison and performance analysis with respect to mobility and scalability issues keeping metrics of throughput, route delay and control over head. Their performances and comparisons are extensively presented in last part of our work.
260 - S.Ahmed , M. M. Sandhu , N. Amjad 2013
Increased use of Wireless sensor Networks (WSNs) in variety of applications has enabled the designers to create autonomous sensors, which can be deployed randomly, without human supervision, for the purpose of sensing and communicating valuable data. Many energy-efficient routing protocols are designed for WSNs based on clustering structure. In this paper, we have proposed iMODLEACH protocol which is an extension to the MODLEACH protocol. Simulation results indicate that iMODLEACH outperforms MODLEACH in terms of network life-time and packets transferred to base station. The mathematical analysis helps to select such values of these parameters which can suit a particular wireless sensor network application.
100 - M. Aslam , M. B. Rasheed , T. Shah 2013
An energy efficient routing protocol is the major attentiveness for researcher in field of Wireless Sensor Networks (WSNs). In this paper, we present some energy efficient hierarchal routing protocols, prosper from conventional Low Energy Adaptive Cl ustering Hierarchy (LEACH) routing protocol. Fundamental objective of our consideration is to analyze, how these ex- tended routing protocols work in order to optimize lifetime of network nodes and how quality of routing protocols is improved for WSNs. Furthermore, this paper also emphasizes on some issues experienced by LEACH and also explains how these issues are tackled by other enhanced routing protocols from classi- cal LEACH. We analytically compare the features and performance issues of each hierarchal routing protocol. We also simulate selected clustering routing protocols for our study in order to elaborate the enhancement achieved by ameliorate routing protocols.
One of the major challenges in Wireless Body Area Networks (WBANs) is to prolong the lifetime of network. Traditional research work focuses on minimizing transmit power, however, in the case of short range communication the consumption power in decod ing is significantly larger than transmit power. This paper investigates the minimization of total power consumption by reducing the decoding power consumption. For achieving a desired Bit Error Rate (BER), we introduce some fundamental results on the basis of iterative message-passing algorithms for Low Density Parity Check Code (LDPC). To reduce energy dissipation in decoder, LDPC based coded communications between sensors are considered. Moreover, we evaluate the performance of LDPC at different code rates and introduce Adaptive Iterative Decoding (AID) by exploiting threshold on the number of iterations for a certain BER. In iterative LDPC decoding, the total energy consumption of network is reduced by 20 to 25 percent.
143 - N. Javaid , S. Faisal , Z. A. Khan 2013
Wireless Body Area Sensor Networks (WBASNs) consist of on-body or in-body sensors placed on human body for health monitoring. Energy conservation of these sensors, while guaranteeing a required level of performance, is a challenging task. Energy effi cient routing schemes are designed for the longevity of network lifetime. In this paper, we propose a routing protocol for measuring fatigue of a soldier. Three sensors are attached to soldiers body that monitor specific parameters. Our proposed protocol is an event driven protocol and takes three scenarios for measuring the fatigue of a soldier. We evaluate our proposed work in terms of network lifetime, throughput, remaining energy of sensors and fatigue of a soldier.
This paper presents path loss model along with framework for probability distribution function for VANETs. Furthermore, we simulate three routing protocols Destination Sequenced Distance Vector (DSDV), Optimized Link State Routing (OLSR) and Dynamic MANET On-demand (DYMO) in NS-2 to evaluate and compare their performance using two Mac-layer Protocols 802.11 and 802.11p. A novel approach of this work is modifications in existing parameters to achieve high efficiency. After extensive simulations, we observe that DSDV out performs with 802.11p while DYMO gives best performance with 802.11.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا