ترغب بنشر مسار تعليمي؟ اضغط هنا

We present experimental results on the preparation of a desired quantum state in a two-level system with the maximum possible fidelity using driving protocols ranging from generalizations of the linear Landau-Zener protocol to transitionless driving protocols that ensure perfect following of the instantaneous adiabatic ground state. We also study the minimum time needed to achieve a target fidelity and explore and compare the robustness of some of the protocols against parameter variations simulating a possible experimental uncertainty. In our experiments, we realize a two-level model system using Bose-Einstein condensates inside optical lattices, but the results of our investigation should hold for any quantum system that can be approximated by a two-level system.
We have performed two-photon excitation via the 6P3/2 state to n=50-80 S or D Rydberg state in Bose-Einstein condensates of rubidium atoms. The Rydberg excitation was performed in a quartz cell, where electric fields generated by plates external to t he cell created electric charges on the cell walls. Avoiding accumulation of the charges and realizing good control over the applied electric field was obtained when the fields were applied only for a short time, typically a few microseconds. Rydberg excitations of the Bose-Einstein condensates loaded into quasi one-dimensional traps and in optical lattices have been investigated. The results for condensates expanded to different sizes in the one-dimensional trap agree well with the intuitive picture of a chain of Rydberg excitations controlled by the dipole-dipole interaction. The optical lattice applied along the one-dimensional geometry produces localized, collective Rydberg excitations controlled by the nearest-neighbour blockade.
We analyze time-of-flight absorption images obtained with dilute Bose-Einstein con-densates released from shaken optical lattices, both theoretically and experimentally. We argue that weakly interacting, ultracold quantum gases in kilohertz-driven op tical potentials constitute equilibrium systems characterized by a steady-state distri-bution of Floquet-state occupation numbers. Our experimental results consistently indicate that a driven ultracold Bose gas tends to occupy a single Floquet state, just as it occupies a single energy eigenstate when there is no forcing. When the driving amplitude is sufficiently high, the Floquet state possessing the lowest mean energy does not necessarily coincide with the Floquet state connected to the ground state of the undriven system. We observe strongly driven Bose gases to condense into the former state under such conditions, thus providing nontrivial examples of dressed matter waves.
Matter waves can be coherently and adiabatically loaded and controlled in strongly driven optical lattices. This coherent control is used in order to modify the modulus and the sign of the tunneling matrix element in the tunneling Hamiltonian. Our fi ndings pave the way for studies of driven quantum systems and new methods for engineering Hamiltonians that are impossible to realize with static techniques.
The time it takes a quantum system to complete a tunneling event (which in the case of cross-barrier tunneling can be viewed as the time spent in a classically forbidden area) is related to the time required for a state to evolve to an orthogonal sta te, and an observation, i.e., a quantum mechanical projection on a particular basis, is required to distinguish one state from another. We have performed time-resolved measurements of Landau-Zener tunneling of Bose-Einstein condensates in accelerated optical lattices, clearly resolving the steplike time dependence of the band populations. The use of different protocols enabled us to access the tunneling probability, in two different bases, namely, the adiabatic basis and the diabatic basis. The adiabatic basis corresponds to the eigenstates of the lattice, and the diabatic one to the freeparticle momentum eigenstates. Our findings pave the way towards more quantitative studies of the tunneling time for LZ transitions, which are of current interest in the context of optimal quantum control and the quantum speed limit.
We present our experimental investigations on the subject of nonlinearity-modified Bloch-oscillations and of nonlinear Landau-Zener tunneling between two energy bands in a rubidium Bose Einstein condensate in an accelerated periodic potential. Nonlin earity introduces an asymmetry in Landau-Zener tunneling. We also present measurements of resonantly enhanced tunneling between the Wannier-Stark energy levels for Bose-Einstein condensates loaded into an optical lattice.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا