ترغب بنشر مسار تعليمي؟ اضغط هنا

The direct impact of white dwarfs has been suggested as a plausible channel for type Ia supernovae. In spite of their (a priori) rareness, in highly populated globular clusters and in galactic centers, where the amount of white dwarfs is considerable , the rate of violent collisions between two of them might be non-negligible. Even more, there are indications that binary white dwarf systems orbited by a third stellar-mass body have an important chance to induce a clean head-on collision. Therefore, this scenario represents a source of contamination for the supernova light-curves sample that it is used as standard candles in cosmology, and it deserves further investigation. Some groups have conducted numerical simulations of this scenario, but their results show several differences. In this paper we address some of the possible sources of these differences, presenting the results of high resolution hydrodynamical simulations jointly with a detailed nuclear post-processing of the nuclear abundances, to check the viability of white dwarf collisions to produce significant amounts of 56Ni. To that purpose, we use a 2D-axial symmetric smoothed particle hydrodynamic code to obtain a resolution considerably higher than in previous studies. In this work, we also study how the initial mass and nuclear composition affect the results. The gravitational wave emission is also calculated, as this is a unique signature of this kind of events. All calculated models produce a significant amount of 56Ni, ranging from 0.1 Msun to 1.1 Msun, compatible not only with normal-Branch type Ia supernova but also with the subluminous and super-Chandrasekhar subset. Nevertheless, the distribution mass-function of white dwarfs favors collisions among 0.6-0.7 Msun objects, leading to subluminous events.
The axisymmetric form of the hydrodynamic equations within the smoothed particle hydrodynamics (SPH) formalism is presented and checked using idealized scenarios taken from astrophysics (free fall collapse, implosion and further pulsation of a sun-li ke star), gas dynamics (wall heating problem, collision of two streams of gas) and inertial confinement fusion (ICF, -ablative implosion of a small capsule-). New material concerning the standard SPH formalism is given. That includes the numerical handling of those mass points which move close to the singularity axis, more accurate expressions for the artificial viscosity and the heat conduction term and an easy way to incorporate self-gravity in the simulations. The algorithm developed to compute gravity does not rely in any sort of grid, leading to a numerical scheme totally compatible with the lagrangian nature of the SPH equations.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا