ترغب بنشر مسار تعليمي؟ اضغط هنا

High resolution simulations of the head-on collision of white dwarfs

39   0   0.0 ( 0 )
 نشر من قبل Domingo Garcia Senz
 تاريخ النشر 2013
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The direct impact of white dwarfs has been suggested as a plausible channel for type Ia supernovae. In spite of their (a priori) rareness, in highly populated globular clusters and in galactic centers, where the amount of white dwarfs is considerable, the rate of violent collisions between two of them might be non-negligible. Even more, there are indications that binary white dwarf systems orbited by a third stellar-mass body have an important chance to induce a clean head-on collision. Therefore, this scenario represents a source of contamination for the supernova light-curves sample that it is used as standard candles in cosmology, and it deserves further investigation. Some groups have conducted numerical simulations of this scenario, but their results show several differences. In this paper we address some of the possible sources of these differences, presenting the results of high resolution hydrodynamical simulations jointly with a detailed nuclear post-processing of the nuclear abundances, to check the viability of white dwarf collisions to produce significant amounts of 56Ni. To that purpose, we use a 2D-axial symmetric smoothed particle hydrodynamic code to obtain a resolution considerably higher than in previous studies. In this work, we also study how the initial mass and nuclear composition affect the results. The gravitational wave emission is also calculated, as this is a unique signature of this kind of events. All calculated models produce a significant amount of 56Ni, ranging from 0.1 Msun to 1.1 Msun, compatible not only with normal-Branch type Ia supernova but also with the subluminous and super-Chandrasekhar subset. Nevertheless, the distribution mass-function of white dwarfs favors collisions among 0.6-0.7 Msun objects, leading to subluminous events.

قيم البحث

اقرأ أيضاً

High-field magnetic white dwarfs have been long suspected to be the result of stellar mergers. However, the nature of the coalescing stars and the precise mechanism that produces the magnetic field are still unknown. Here we show that the hot, convec tive, differentially rotating corona present in the outer layers of the remnant of the merger of two degenerate cores is able to produce magnetic fields of the required strength that do not decay for long timescales. We also show, using an state-of-the-art Monte Carlo simulator, that the expected number of high-field magnetic white dwarfs produced in this way is consistent with that found in the solar neighborhood.
The ESO Supernova Ia Progenitor Survey (SPY) took high-resolution spectra of more than 1000 white dwarfs and pre-white dwarfs. About two thirds of the stars observed are hydrogen-dominated DA white dwarfs. Here we present a catalog and detailed spect roscopic analysis of the DA stars in the SPY. Atmospheric parameters effective temperature and surface gravity are determined for normal DAs. Double-degenerate binaries, DAs with magnetic fields or dM companions, are classified and discussed. The spectra are compared with theoretical model atmospheres using a chi^2 fitting technique. Our final sample contains 615 DAs, which show only hydrogen features in their spectra, although some are double-degenerate binaries. 187 are new detections or classifications. We also find 10 magnetic DAs (4 new) and 46 DA+dM pairs (10 new).
85 - Adam Burgasser 2019
High resolution spectroscopy of the lowest-mass stars and brown dwarfs reveals their origins, multiplicity, compositions and physical properties, with implications for the star formation and chemical evolution history of the Milky Way. We motivate th e need for high-resolution, infrared spectroscopic surveys to reach these faint sources.
We present the first radiation magnetohydrodynamics simulations of the atmosphere of white dwarf stars. We demonstrate that convective energy transfer is seriously impeded by magnetic fields when the plasma-beta parameter, the thermal to magnetic pre ssure ratio, becomes smaller than unity. The critical field strength that inhibits convection in the photosphere of white dwarfs is in the range B = 1-50 kG, which is much smaller than the typical 1-1000 MG field strengths observed in magnetic white dwarfs, implying that these objects have radiative atmospheres. We have then employed evolutionary models to study the cooling process of high-field magnetic white dwarfs, where convection is entirely suppressed during the full evolution (B > 10 MG). We find that the inhibition of convection has no effect on cooling rates until the effective temperature (Teff) reaches a value of around 5500 K. In this regime, the standard convective sequences start to deviate from the ones without convection owing to the convective coupling between the outer layers and the degenerate reservoir of thermal energy. Since no magnetic white dwarfs are currently known at the low temperatures where this coupling significantly changes the evolution, effects of magnetism on cooling rates are not expected to be observed. This result contrasts with a recent suggestion that magnetic white dwarfs with Teff < 10,000 K cool significantly slower than non-magnetic degenerates.
Recently, the power of Gaia data has revealed an enhancement of high-mass white dwarfs (WDs) on the Hertzsprung--Russell diagram, called the Q branch. This branch is located at the high-mass end of the recently identified crystallization branch. Inve stigating its properties, we find that the number density and velocity distribution on the Q branch cannot be explained by the cooling delay of crystallization alone, suggesting the existence of an extra cooling delay. To quantify this delay, we statistically compare two age indicators -- the dynamical age inferred from transverse velocity, and the photometric isochrone age -- for more than one thousand high-mass WDs (1.08--1.23 $M_odot$) selected from Gaia Data Release 2. We show that about 6 % of the high-mass WDs must experience an 8 Gyr extra cooling delay on the Q branch, in addition to the crystallization and merger delays. This cooling anomaly is a challenge for WD cooling models. We point out that $^{22}$Ne settling in C/O-core WDs could account for this extra cooling delay.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا