ترغب بنشر مسار تعليمي؟ اضغط هنا

45 - Diego A. Wisniacki 2014
When a regular classical system is perturbed, non-linear resonances appear as prescribed by the KAM and Poincar`{e}-Birkhoff theorems. Manifestations of this classical phenomena to the morphologies of quantum wave functions are studied in this letter . We reveal a systematic formation of an universal structure of localized wave functions in systems with mixed classical dynamics. Unperturbed states that live around invariant tori are mixed when they collide in an avoided crossing if their quantum numbers differ in a multiple to the order of the classical resonance. At the avoided crossing eigenstates are localized in the island chain or in the vicinity of the unstable periodic orbit corresponding to the resonance. The difference of the quantum numbers determines the excitation of the localized states which is reveled using the zeros of the Husimi distribution.
The local density of states or its Fourier transform, usually called fidelity amplitude, are important measures of quantum irreversibility due to imperfect evolution. In this Rapid Communication we study both quantities in a paradigmatic many body sy stem, the Dicke Hamiltonian, where a single-mode bosonic field interacts with an ensemble of N two-level atoms. This model exhibits a quantum phase transition in the thermodynamic limit, while for finite instances the system undergoes a transition from quasi-integrability to quantum chaotic. We show that the width of the local density of states clearly points out the imprints of the transition from integrability to chaos but no trace remains of the quantum phase transition. The connection with the decay of the fidelity amplitude is also established.
The local density of states (LDOS) is a distribution that characterizes the effect of perturbations on quantum systems. Recently, it was proposed a semiclassical theory for the LDOS of chaotic billiards and maps. This theory predicts that the LDOS is a Breit-Wigner distribution independent of the perturbation strength and also gives a semiclassical expression for the LDOS witdth. Here, we test the validity of such an approximation in quantum maps varying the degree of chaoticity, the region in phase space where the perturbation is applying and the intensity of the perturbation. We show that for highly chaotic maps or strong perturbations the semiclassical theory of the LDOS is accurate to describe the quantum distribution. Moreover, the width of the LDOS is also well represented for its semiclassical expression in the case of mixed classical dynamics.
Quantum manifestations of the dynamics around resonant tori in perturbed Hamiltonian systems, dictated by the Poincare--Birkhoff theorem, are shown to exist. They are embedded in the interactions involving states which differ in a number of quanta eq ual to the order of the classical resonance. Moreover, the associated classical phase space structures are mimicked in the quasiprobability density functions and their zeros.
The prediction of the response of a closed system to external perturbations is one of the central problems in quantum mechanics, and in this respect, the local density of states (LDOS) provides an in- depth description of such a response. The LDOS is the distribution of the overlaps squared connecting the set of eigenfunctions with the perturbed one. Here, we show that in the case of closed systems with classically chaotic dynamics, the LDOS is a Breit-Wigner distribution under very general perturbations of arbitrary high intensity. Consequently, we derive a semiclassical expression for the width of the LDOS which is shown to be very accurate for paradigmatic systems of quantum chaos. This Letter demonstrates the universal response of quantum systems with classically chaotic dynamics.
Loschmidt echo (LE) is a measure of reversibility and sensitivity to perturbations of quantum evolutions. For weak perturbations its decay rate is given by the width of the local density of states (LDOS). When the perturbation is strong enough, it ha s been shown in chaotic systems that its decay is dictated by the classical Lyapunov exponent. However, several recent studies have shown an unexpected non-uniform decay rate as a function of the perturbation strength instead of that Lyapunov decay. Here we study the systematic behavior of this regime in perturbed cat maps. We show that some perturbations produce coherent oscillations in the width of LDOS that imprint clear signals of the perturbation in LE decay. We also show that if the perturbation acts in a small region of phase space (local perturbation) the effect is magnified and the decay is given by the width of the LDOS.
We test the ability of semiclassical theory to describe quantitatively the revival of quantum wavepackets --a long time phenomena-- in the one dimensional quartic oscillator (a Kerr type Hamiltonian). Two semiclassical theories are considered: time-d ependent WKB and Van Vleck propagation. We show that both approaches describe with impressive accuracy the autocorrelation function and wavefunction up to times longer than the revival time. Moreover, in the Van Vleck approach, we can show analytically that the range of agreement extends to arbitrary long times.
Vortices are known to play a key role in the dynamics of the quantum trajectories defined within the framework of the de Broglie-Bohm formalism of quantum mechanics. It has been rigourously proved that the motion of a vortex in the associated velocit y field can induce chaos in these trajectories, and numerical studies have explored the rich variety of behaviors that due to their influence can be observed. In this paper, we go one step further and show how the theory of dynamical systems can be used to construct a general and systematic classification of such dynamical behaviors. This should contribute to establish some firm grounds on which the studies on the intrinsic stochasticity of Bohms quantum trajectories can be based. An application to the two dimensional isotropic harmonic oscillator is presented as an illustration.
We study the quantum to classical transition in a chaotic system surrounded by a diffusive environment. The emergence of classicality is monitored by the Renyi entropy, a measure of the entanglement of a system with its environment. We show that the Renyi entropy has a transition from quantum to classical behavior that scales with $hbar^2_{rm eff}/D$, where $hbar_{rm eff}$ is the effective Planck constant and $D$ is the strength of the noise. However, it was recently shown that a different scaling law controls the quantum to classical transition when it is measured comparing the corresponding phase space distributions. We discuss here the meaning of both scalings in the precise definition of a frontier between the classical and quantum behavior. We also show that there are quantum coherences that the Renyi entropy is unable to detect which questions its use in the studies of decoherence.
Unstable periodic orbits are known to originate scars on some eigenfunctions of classically chaotic systems through recurrences causing that some part of an initial distribution of quantum probability in its vicinity returns periodically close to the initial point. In the energy domain, these recurrences are seen to accumulate quantum density along the orbit by a constructive interference mechanism when the appropriate quantization (on the action of the scarring orbit) is fulfilled. Other quantized phase space circuits, such as those defined by homoclinic tori, are also important in the coherent transport of quantum density in chaotic systems. The relationship of this secondary quantum transport mechanism with the standard mechanism for scarring is here discussed and analyzed.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا