ترغب بنشر مسار تعليمي؟ اضغط هنا

Recent progress in observational studies of magnetic activity in M dwarfs urgently requires support from ideas of stellar dynamo theory. We propose a strategy to connect observational and theoretical studies. In particular, we suggest four magnetic c onfigurations that appear relevant to dwarfs from the viewpoint of the most conservative version of dynamo theory, and discuss observational tests to identify the configurations observationally. As expected, any such identification contains substantial uncertainties. However the situation in general looks less pessimistic than might be expected. Several identifications between the phenomenology of individual stars and dynamo models are suggested. Remarkably, all models discussed predict substantial surface magnetic activity at rather high stellar latitudes. This prediction looks unexpected from the viewpoint of our experience observing the Sun (which of course differs in some fundamental ways from these late-type dwarfs). We stress that a fuller understanding of the topic requires a long-term (at least 15 years) monitoring of M dwarfs by Zeeman-Doppler imaging.
In atmospheres of magnetic main-sequence stars, the diffusion of chemical elements leads to a number of observed anomalies, such as abundance spots across the stellar surface. The aim of this study was to derive a detailed picture of the surface abun dance distribution of the magnetic chemically peculiar star HD 3980. Based on high-resolution, phase-resolved spectroscopic observations of the magnetic A-type star HD 3980, the inhomogeneous surface distribution of 13 chemical elements (Li, O, Si, Ca, Cr, Mn, Fe, La, Ce, Pr, Nd, Eu, and Gd) has been reconstructed. The INVERS12 code was used to invert the rotational variability in line profiles to elemental surface distributions. Assuming a centered, dominantly dipolar magnetic field configuration, we find that Li, O, Mg, Pr, and Nd are mainly concentrated in the area of the magnetic poles and depleted in the regions around the magnetic equator. The high abundance spots of Si, La, Ce, Eu, and Gd are located between the magnetic poles and the magnetic equator. Except for La, which is clearly depleted in the area of the magnetic poles, no obvious correlation with the magnetic field has been found for these elements otherwise. Ca, Cr, and Fe appear enhanced along the rotational equator and the area around the magnetic poles. The intersection between the magnetic and the rotational equator constitutes an exception, especially for Ca and Cr, which are depleted in that region. No obvious correlation between the theoretically predicted abundance patterns and those determined in this study could be found. This can be attributed to a lack of up-to-date theoretical models, especially for rare earth elements.
Strong surface magnetic fields are ubiquitously found in M-dwarfs with mean intensities on the order of few thousand Gauss-three orders of magnitude higher than the mean surface magnetic field of the Sun. These fields and their interaction with photo spheric convection are the main source of stellar activity, which is of big interest to study links between parent stars and their planets. Moreover, the understanding of stellar magnetism, as well as the role of different dynamo-actions in particular, is impossible without explaining magnetic fields in M-dwarfs. Measuring magnetic field intensities and geometries in such cool objects, however, is strongly limited to our ability to simulate the Zeeman effect in molecular lines. In this work, we present quantitative results of modelling and analysis of the magnetic fields in selected M-dwarfs in FeH Wing-Ford lines and strong atomic lines. Some particular FeH lines are found to be the excellent probes of the magnetic field.
64 - D. Shulyak 2010
We present first quantitative results of the surface magnetic field measurements in selected M-dwarfs based on detailed spectra synthesis conducted simultaneously in atomic and molecular lines of the FeH Wing-Ford $F^4,Delta-X^4,Delta$ transitions. A modified version of the Molecular Zeeman Library (MZL) was used to compute Lande g-factors for FeH lines in different Hunds cases. Magnetic spectra synthesis was performed with the Synmast code. We show that the implementation of different Hunds case for FeH states depending on their quantum numbers allows us to achieve a good fit to the majority of lines in a sunspot spectrum in an automatic regime. Strong magnetic fields are confirmed via the modelling of atomic and FeH lines for three M-dwarfs YZ~CMi, EV~Lac, and AD~Leo, but their mean intensities are found to be systematically lower than previously reported. A much weaker field ($1.7-2$~kG against $2.7$~kG) is required to fit FeH lines in the spectra of GJ~1224. Our method allows us to measure average magnetic fields in very low-mass stars from polarized radiative transfer. The obtained results indicate that the fields reported in earlier works were probably overestimated by about $15-30$%. Higher quality observations are needed for more definite results.
Chemically Peculiar (CP) stars have been subject of systematic research since more than 50 years. With the discovery of pulsation of some of the cool CP stars, the availability of advanced spectropolarimetric instrumentation and high signal- to-noise , high resolution spectroscopy, a new era of CP star research emerged about 20 years ago. Together with the success in ground-based observations, new space projects are developed that will greatly benefit for future investigations of these unique objects. In this contribution we will give an overview of some interesting results obtained recently from ground-based observations and discuss on future outstanding Gaia space mission and its impact on CP star research.
The presence of electric currents in the atmospheres of magnetic chemically peculiar (mCP) stars could bring important theoretical constrains about the nature and evolution of magnetic field in these stars. The Lorentz force, which results from the i nteraction between the magnetic field and the induced currents, modifies the atmospheric structure and induces characteristic rotational variability of pressure-sensitive spectroscopic features, that can be analysed using phase-resolved spectroscopic observations. In this work we continue the presentation of results of the magnetic pressure studies in mCP stars focusing on the high-resolution spectroscopic observations of Bp star 56Ari. We have detected a significant variability of the Halpha, Hbeta, and Hgamma spectral lines during full rotation cycle of the star. Then these observations are interpreted in the framework of the model atmosphere analysis, which accounts for the Lorentz force effects. We used the LLmodels stellar model atmosphere code for the calculation of the magnetic pressure effects in the atmosphere of 56Ari taking into account realistic chemistry of the star and accurate computations of the microscopic plasma properties. The Synth3 code was employed to simulate phase-resolved variability of Balmer lines. We demonstrate that the model with the outward-directed Lorentz force in the dipole+quadrupole configuration is likely to reproduce the observed hydrogen lines variation. These results present strong evidences for the presence of non-zero global electric currents in the atmosphere of this early-type magnetic star.
In the last few years we have developed stellar model atmospheres which included effects of anomalous abundances and strong magnetic field. The full treatment of anomalous Zeeman splitting and polarized radiative transfer were introduced in the model atmosphere calculations for the first time. In this investigation we present results of modelling the atmosphere of one of the most extreme magnetic chemically peculiar stars, HD137509. This Bp SiCrFe star has the mean surface magnetic field modulus of about 29kG. We use the recent version of the line-by-line opacity sampling stellar model atmosphere code LLmodels, which incorporates the full treatment of Zeeman splitting of spectral lines, detailed polarized radiative transfer and arbitrary abundances. We compare model predictions with photometric and spectroscopic observations of the star, aiming to reach a self-consistency between the abundance pattern derived from high-resolution spectra and abundances used for model atmosphere calculation. Based on magnetic model atmospheres, we redetermined abundances and fundamental parameters of HD137509 using spectroscopic and photometric observations. This allowed us to obtain a better agreement between observed and theoretical parameters compared to non-magnetic models with individual or scaled-solar abundances. We confirm that the magnetic field effects should be taken into account in the stellar parameter determination and abundance analysis.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا