ترغب بنشر مسار تعليمي؟ اضغط هنا

164 - Zhiyong Qiu , Jia Li , Dazhi Hou 2015
Spin fluctuation and transition have always been one of central topics of magnetism and condensed matter science. Experimentally, the spin fluctuation is found transcribed onto scattering intensity in the neutron scattering process, which is represen ted by dynamical magnetic susceptibility and maximized at phase transitions. Importantly, a neutron carries spin without electric charge, and it can bring spin into a sample without being disturbed by electric energy, although large facilities such as a nuclear reactor is necessary. Here we show that spin pumping, frequently used in nanoscale spintronic devices, provides a desktop micro probe for spin transition; spin current is a flux of spin without an electric charge and its transport reflects spin excitation. We demonstrate detection of antiferromagnetic transition in ultra-thin CoO films via frequency dependent spin-current transmission measurements, which provides a versatile probe for phase transition in an electric manner in minute devices.
523 - Dazhi Hou , Gang Su , Yuan Tian 2015
We derive a general scaling relation for the anomalous Hall effect in ferromagnetic metals involving multiple competing scattering mechanisms, described by a quadratic hypersurface in the space spanned by the partial resistivities. We also present ex perimental findings, which show strong deviation from previously found scaling forms when different scattering mechanism compete in strength but can be nicely explained by our theory.
189 - Dazhi Hou , Z. Qiu , R. Iguchi 2015
Hall effects have been employed as sensitive detectors of magnetic fields and magnetizations. In spintronics, exotic phenomena often emerge from a non-equilibrium spin polarization or magnetization, that is very difficult to measure directly. The cha llenge is due to the tiny total moment, which is out of reach of superconducting quantum interference devices and vibrating sample magnetometers or spectroscopic methods such as X-ray magnetic circular dichroism. The Kerr effect is sufficiently sensitive only in direct gap semiconductors, in which the Kerr angle can be resonantly enhanced. Here we demonstrate that even one excess spin in a million can be detected by a Hall effect at room temperature. The novel Hall effect is not governed by the spin Hall conductivity but by its energy derivative thereby related to the spin Nernst effect.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا