ترغب بنشر مسار تعليمي؟ اضغط هنا

In this paper, by using a stochastic reaction-diffusion-taxis model, we analyze the picophytoplankton dynamics in the basin of the Mediterranean Sea, characterized by poorly mixed waters. The model includes intraspecific competition of picophytoplank ton for light and nutrients. The multiplicative noise sources present in the model account for random fluctuations of environmental variables. Phytoplankton distributions obtained from the model show a good agreement with experimental data sampled in two different sites of the Sicily Channel. The results could be extended to analyze data collected in different sites of the Mediterranean Sea and to devise predictive models for phytoplankton dynamics in oligotrophic waters.
The present paper discusses the use of modified Lotka-Volterra equations in order to stochastically simulate the behaviour of Listeria monocytogenes and Lactic Acid Bacteria (LAB) during the fermentation period (168 h) of a typical Sicilian salami. F or this purpose, the differential equation system is set considering T, pH and aw as stochastic variables. Each of them is governed by dynamics that involve a deterministic linear decrease as a function of the time t and an additive noise term which instantaneously mimics the fluctuations of T, pH and aw. The choice of a suitable parameter accounting for the interaction of LAB on L. monocytogenes as well as the introduction of appropriate noise levels allows to match the observed data, both for the mean growth curves and for the probability distribution of L. monocytogenes concentration at 168 h.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا